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Abstract— Time-varying group formation-tracking control
for general linear multi-agent systems with switching topologies
and varying time delays is studied in this paper. Due to the
deferent effects in coordinated problem, the agents in group
formation-tracking are divided into two roles, leaders and
followers, respectively. The followers are allowed to achieve the
expected subgroup formation and, in the meantime, tracking
the trajectory of the leaders in each group. Firstly, utilizing the
neighboring information, the observers is proposed for each
follower to estimate the leader’s state in the subgroup. Based
on the transformed of the estimated error and Lyapunov theory,
the effectiveness of the proposed observer is proven. Secondly,
by incorporating the state observer in the formation-tracking
protocol, the novel controller is put forward to solve the group
formation-tracking problem under the influence of both time-
varying delays and switching networks. Then, an algorithm to
determine the gain matrix is presented, and the convergence
the of group formation error is also demonstrated. Finally, a
numerical simulation result is given to verify the practical of
the theoretical results.

Index Terms— Group formation-tracking problem; general
linear multi-agent systems; time-varying delays; switching
topologies

I. INTRODUCTION

In recent years, coordinated control has been applied in
varies engineering areas such as unmanned aerial vehicles
[1], [2], spacecraft [3], [4], and underactuated surface ves-
sels [5]. As an important method in coordinated problem,
consensus control has aroused considerable research interest
due to the low computing consumption and theoretical sig-
nificance. Consensus-based control of multi-agent systems
(MASs) can be divided into different categories, for instant,
formation control [6], containment control [7], formation-
tracking control [8], [9], etc.

As one of the most attracting areas, formation control
aiming a group of agents to perform specific formation are
introduced. Based on consensus problem, some formation
control problems for first-order and second-order were stud-
ied [10]. Moreover, Dong et al. in [11] proposed a formation
feasibility condition for the desire formation, which means
not all formations were allowed to achieve. However, in
many complicated missions such as patrol or detection,
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the agents should not only realize the desire formation,
but also track the trajectory generated by the virtual or
real leaders. Therefore, the research on formation-tracking
control has received much attention, and a large amount of
results have been reported [12], [13]. Due to the congestion
of the interaction channel, the interaction topologies can
be switching. Therefore, time-varying formation tracking
control for MASs with switching interaction networks is
taken into consideration. Yu in [14] investigated time-varying
formation tracking problem under the circumstance of both
switching interactions and leader’s unknown input. As an
important factor in the control system, communication de-
lays can effect the performance of the agents and cause
the divergence. Hence, a consensus-based protocol was put
forward to solve a class of MASs with time-varying delays in
[15]. The above mentioned researches only focus on a single
formation problem. In practical applications, for instance,
multiple patrolling or targets enclosing. The MASs should
be divided into several group and play different role in the
mission simultaneously. An acyclic partition of the nodes was
used to solve the group formation problem in the work of Qin
et al. [16]. An observed-based controller is put forward for
general linear systems to achieve group formation tracking
in [17]. Han et al. in [18] investigated the group formation-
tracking problem for second-order systems with time-varying
communication delays. Moreover, considering the switching
interaction topologies, a protocol was put forward to realize
the group formation-tracking problem based on neighboring
information in [19].

The above mentioned investigations considered the time-
varying delay, switching topology, and unknown input, etc.
But none of them study the group formation-tracking prob-
lem with both communication delays and switching net-
works. Considering both constraints at the same time are
much more difficult than considering one case separately.
To the best of our knowledge, the group formation-tracking
problems with both time-varying delays and switching inter-
action topologies are still open.

Motivated by the above investigations. This paper studies
the group formation-tracking for general linear MASs with
both communication delays and switching topologies.

1) Compared with the works in [10], [11], this paper
focuses on group formation tracking problem, in which
all the followers can be divided into several groups to
execute the different tasks.

2) Note that the previous works on group formation-
tracking in [14], [15] only study the second-order
MASs. However, to extending the control approach,
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generic MASs are studied in this investigation, and
both first-order or second-order systems can be re-
garded as a special case in general system.

3) Both communication delays and switching topologies
are studied in this paper, which means the group
formation-tracking can accommodate in a more com-
plex environment. Hence, the group formation-tracking
problems in [14], [15] are restrictive.

The organization of the rest paper is given as followings.
Section II demonstrates some basic concepts on graph theory
and some significant definitions are also proposed. In section
III, a state observer and group formation-tracking protocol
are put forward for MAS with communication delays and
switching networks. Moreover, a feasible algorithm is also
presented. Section IV shows a numerical simulation for the
mentioned method. Section V concludes the whole works.

Throughout this paper, let ⊗ denote the Kronecker product
of two matrices. I represents an identify matrix with appro-
priate size. Let 1 and 0n be a zero matrices with dimension
a column vectors with 1 and n as its element.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

In this section, some basic concepts and notations on graph
theory and the problem descriptions are demonstrated.

A. Preliminaries

A weighted undirected graph G can be represented
by {V, T,W}, where V = {v1, v2, · · · vN} is a set of
nodes, T ⊆ {(vi, vj) : vi, vj ∈ V } is the set of edges, and
W = [aij ] ∈ RN×N is a weighted adjacency matrix.
Let eij = (vi, vj) denote the edge of G and wij denote
the nonnegative element with eji. Define wij > 0 if
and only if eji ∈ T and wij = 0 otherwise. Ni =
{vj ∈ V : (vj , vi) ∈ T} is the set of neighbors of node
vi. The Laplacian matrix L is defined as L = D − W ,
where D = diag

{∑N
j=1 w1j ,

∑N
j=1 w2j , · · · ,

∑N
j=1 wNj

}
.

A path from node vi1 to vik is a series of ordered edges
(vi1, vi2), (vi2, vi3), · · · , (vik−1, vik). The definition of
undirected graph is that vij ∈ T implies vji ∈ T and
wij = wji. The undirected graph is said to be connected
if there is a path between any distinct pair of nodes.

It is assumed that the interaction topologies are switching.
Let [ tk, tk+1) (k ∈ N) denotes an infinite sequence of uni-
formly bounded non-overlapping time intervals with t0 = 0,
tk − tk+1 > Td > 0. Td is said as the dwell time, during
which the graph keeps fixed. The graph changes at switching
sequence tk+1. Let σ(t) : [0,∞)→ {1, 2, · · · , h} denotes a
switching signal. Gσ(t) and Lσ(t) represent the graph and
Laplacian matrix at t. Let LFσ(t) and LFσ(t) denote Laplacian
matrix among the followers and leaders.

Definition 1: An agent is called a leader if its neighbor
set has no agent, otherwise it is called a follower if it has at
least one neighbor.

Lemma 1: If G is connected, then L has a simple 0
eigenvalue with 1N

/√
N as its right eigenvector, and all

the other eigenvalues are positive.

B. Problem description

Consider a MAS with M leaders and N followers
and the system is divided into several groups. Let E =
{1, 2, · · · ,M} and F = {M + 1,M + 2, · · · ,M +N} de-
note the leaders set and followers set, respectively. The target
of the group formation-tracking is that the followers should
form the desired sub-formation and track the trajectory of
each group leader in the meanwhile.

It is assumed that the MAS has g ∈ N (g > 1) sub-
groups and the separation of the nodes for the followers
VF are defined as V1, V2, · · · , Vg , which satisfies Vk 6=
∅ (k = 1, 2, · · · , g), ∪gk=1Vk = VF and Vk ∩ Vm = ∅
(k,m ∈ {1, 2, · · · , g} ; k 6= m). For follower i, j ∈ F , define
ī and j̄ as the index of the subgroups to which agents i, j
belong. If ī = j̄, the followers i and j are said to be
in the same subgroup. The number of the followers and
leaders in subgroup ī (̄i ∈ 1, 2, · · · , g) are denoted by nī and
nīl, respectively. Note that there exists only one leader in

each group, therefore,
g∑̄
i=1

nī = N and
g∑̄
i=1

nīl = M . Let

Vī = {Ξī + 1,Ξī + 2, · · · ,Ξī + nī}, Ξī =
ī−1∑
k=1

nk denote

the index of subgroup ī.
The leader of subgroup ī (̄i = {1, 2, · · · , g}) is defined as

ż ī0 (t) = Az ī0 (t) (1)

The follower of i (i ∈ {Ξī + 1,Ξī + 2, · · · ,Ξī + nī}) in
subgroup ī (̄i = {1, 2, · · · , g}) can be modeled by

ẋīi (t) = Axīi (t) +Buīi (t) (2)

where xīi (t) ∈ Rn and uīi (t) ∈ Rm are the state, control
input of ith follower. z ī0 (t) ∈ Rn is the state of the jth
leader. A ∈ Rn×n and B ∈ Rn×m are the constant gain
known matrices with rank(B) = m. The system matrixes
(A,B) is stabilizable.

Assumption 1: The {V1, V2, · · · , Vg} is an acyclic par-
tition of the node set VF and for each subgroup
ī (̄i ∈ 1, 2, · · · , g), the corresponding topology Ḡσ(t)̄i of the
followers is undirected and connected.

The Laplacian matrix Lσ(t) of the group MASs is shown
as follows: [

0M×M 0M×N
LEFσ(t) LFσ(t)

]
Based on Assumption 1, LEFσ(t) and LFσ(t) has the following

form

LEFσ(t) =


LEFσ(t)1 0 · · · 0

0 LEFσ(t)2 · · · 0
...

...
. . .

...
0 0 0 LEFσ(t)g

 (3)

LFσ(t) =


LFσ(t)1 0 · · · 0

LFσ(t)12 LFσ(t)2 · · · 0
...

...
. . .

...
LFσ(t)g1 LFσ(t)g2 · · · Lσ(t)g

 (4)

106

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on July 15,2024 at 06:18:54 UTC from IEEE Xplore.  Restrictions apply. 



Where LEFσ(t) ∈ RN×M and LFσ(t) ∈ RN×N denote to the
interaction between the leaders to followers and among the
followers. Let LEF

σ(t)̄i
represents the communication between

the leader and the followers of the subgroup ī, and LF
σ(t)̄ij̄

represents the followers interaction from subgroup ī to
subgroup j̄ (̄i, j̄ ∈ {1, 2, · · · , g}).

Assumption 2: For any communication topologies, the
sum of each row of LF

σ(t)̄ij̄
, ī, j̄ ∈ {1, 2, · · · , g} is equal

to zeros. And the eigenvalues of the LFσ(t) ∈ RN×N are
different.

Lemma 2: Based on Assumption 1 and Assumption 2, the
Laplacian matrix Lσ(t) has g − th 0 eigenvalues with u1 =[
1, 0TM−1, 1

T
n1
, · · · 0TN−n1

]T
, u2 =

[
0, 1, 0TM−2, 0Tn1

, 1Tn2
,

· · · , 0TN−n1−n2

]T
, · · · , ug =

[
0TM−1, 1, 0

T
N−ng , 1

T
ng

]T
as

the corresponding right eigenvectors, and all the left N − g
eigenvalues have the positive real parts under the influence
of both time-varying delays and switching interaction topolo-
gies.

Let hī (t) =
[
hTΞī+1 (t) , hTΞī+2 (t) , · · · , hTΞī+nī (t)

]T
∈

Rnni represent the expected formation of subgroup ī
(̄i ∈ {1, 2, · · · , g}), where each component of hTΞī+j (t)
(j ∈ {Ξī + 1,Ξī + 2, · · · ,Ξī + nī}) is piecewise continu-
ously differentiable. Denote xī (t) =

[
xīTΞī+1 (t) , xīTΞī+2 (t)

, · · · , xīTΞī+nī (t)
]T
∈ Rnnī for the followers of subgroup ī

ī ∈ {1, 2, · · · , g}.
Definition 2: If for any given bounded initial values, the

MAS (1) and (2) is said to achieve the group formation
tracking for any subgroup ī (̄i ∈ {1, 2, · · · , g})

lim
t→0

(
xī (t)− hī (t)−

(
1ni ⊗ z ī0 (t)

))
= 0 (5)

The rest of this paper will concentrate on
1) Under what condition the MAS (1) and (2) can realized

the desired group formation tracking.
2) How to design the state observer and group formation

tracking protocol under the influence of time-varying
delays and switching interaction topologies.

III. MAIN RESULTS

In this section, state observer for each follower to estimate
the group leader is introduced under the influence of both
time-varying communication delays and switching interac-
tion topologies. Then, the effectiveness of the proposed
observer is to be proved. Furthermore, an observer-based
group formation protocol is proposed and an algorithm to
determine the constant matrix in the protocol is also put
forward.

Consider the following state observer for each follower:

˙̂
ζ īi (t) = Aζ̂ īi (t)−K1

 ∑
j∈Ni

σ(t)
,c={1,2,··· ,g}

wij

(
ζ̂ īi (t− τ (t))

−ζ̂cj (t− τ (t))
)

+ wi0

(
ζ̂ īi (t− τ (t))− z ī0 (t− τ (t))

))
(6)

Where ζ̂ īi (t) is ith follower’ observer belongs to the sub-
group ī (̄i ∈ {1, 2, · · · , g}) and z ī0 (t) is the leader of sub-
group ī. τ (t) represents the time-varying communication
delays. K1 is the constant gain matrix can be calculated by
the later Algorithm.

Assumption 3: The time-varying communication delays
τ (t) satisfies 0 6 τ(t) 6 σ and |τ̇(t)| 6 δ < 1. Note that σ
and δ are known constants, which means τ (t) is bounded.

The following lemmas are presented to prove the effec-
tiveness of the proposed observer.

Lemma 3: A vector-valued function is denoted by η (t) ∈
R2d, which entries are first-order continuous-derivative. One
gets

−
∫ t

t−τ(t)

η̇T (s)P η̇ (s)ds

6 γT (t)

[
XT

1 +X1

∗
−XT

1 + X2

−XT
2 −X1

]
γ (t)

+ τ (t) γT (t)

[
XT

1

XT
2

]
P−1 [X1, X2] γ (t)

(7)

where X1, X2 ∈ R2d, γ (t) =
[
ηT (t) , ηT (t− τ (t))

]T
and

P is a positive definite symmetric matrix.
Let λ̄1 = min

{
λiσ(t)

}
, λ̄2 = max

{
λiσ(t)

}
, σ(t) ∈

{1, 2, · · · , p}, λiσ(t) is the eigenvalue of real symmetric
positive definite matrix.

Lemma 4: For any i, the switching signal σ(t) ∈
{1, 2, · · · , p}, Θi

σ(t) = Φ0 + λiσ(t)Φ1 < 0 if and only if
Θi = Φ0 + λ̄iΦ1 < 0 (i ∈ {1, 2}).

Lemma 5: Let ζ̂ ī (t) =
[
ζ̂ īTΞī+1 (t) , ζ̂ īTΞī+2 (t), · · · ,

ζ̂ īTΞī+nī (t)
]T
∈ Rnnī , If the state observer satisfies the

following equation

lim
t→0

(
ζ̂ ī (t)− (1ni ⊗ In) z ī0 (t)

)
= 0 (8)

Then the observer is said to estimate the leader’s state for
the subgroup ī.

The constant matrix in state observer K1 is designed as
the following linear matrix inequality (LMI) If there exist
positive symmetric matrices R, Ω, X and real matrix K̄1,
LMI (9) is feasible for any λ̄Fi (i = 1, 2)

∏
(λ̄i) =


Ξ11 Ξ12 Ξ13 0 R
∗ Ξ22 Ξ23 σX 0
∗ ∗ −σX 0 0
∗ ∗ ∗ −σX 0
∗ ∗ ∗ ∗ −Ω

 < 0 (9)

where
Ξ11 = RST + SR− λ̄Fi K̄1 − λ̄Fi K̄T

1 − (1− δ)Ω
Ξ12 = R− λ̄Fi K̄1 − (2− δ)Ω
Ξ13 = σRST − σλ̄Fi K̄T

1

Ξ22 = −(3− δ)Ω
Ξ23 = −σλ̄Fi K̄T

1

λ̄Fi (i = 1, 2) are the minimum and maximum eigenvalues
of the followers Laplacian matrix LFσ(t).
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Then the gain matric can be defined as K1 = K̄1Ω−1.
Based on the calculated K1 and Theorem 1 the following

Theorem can be derived.
Theorem 1: The proposed state observer can estimate the

leader state for each subgroup under the influence of both
time-varying communication delays and switching interac-
tion topologies.

Proof: Form Theorem 1, ζ̃ (t) denotes the estimate
error. one gets

˙̃
θ (t) = (IM+N ⊗A) θ̃ (t)

−
([

0 0
0 LFσ(t)

]
⊗K1

)
θ̃ (t− τ (t))

(10)

Note that θ̃ (t) =
[
zT (t) , ζ̃T (t)

]T
, which means{

ż (t) = (IM ⊗A) z (t)

˙̃ζ (t) = (IN ⊗A) ζ̃ (t)−
(
LFσ(t) ⊗K1

)
ζ̃ (t− τ (t))

(11)
Considering the following common Lyapunov-Krasovskii

candidate function:

V (t) = V1 (t) + V2 (t) + V3 (t) (12)

where
V1 (t) = ζ̃T (t)

(
IN ⊗R−1

)
ζ̃ (t),

V2 (t) =
∫ t
t−τ(t)

ζ̃T (s)
(
IN ⊗ Ω−1

)
ζ̃ (s) ds,

V3 (t) =
∫ 0

−σ
∫ t
t+µ

˙̃ζ
T

(s)
(
IN ⊗X−1

)
˙̃ζ (s)dsdµ.

It can be verified that LFσ(t) is positive symmetric matrices

symmetric, Let ΛFσ(t) = diag
(
λ1
σ(t), λ

2
σ(t), · · · , λ

N
σ(t)

)
, then

there exists an orthogonal matrix Mσ(t) ∈ RN×N satisfying
MT
σ(t)L

F
σ(t)Mσ(t) = ΛFσ(t).

Define η (t) =
(
MT
σ(t) ⊗ INn

)
ζ̃ (t) =

[
ηT1 (t) , ηT2 (t) ,

, · · · , ηTN (t)
]T

, take the derivative of V (t) along the (12)

V̇1 (t) =
N∑
i=1

η̂Ti (t)

[
R−1S + STR−1 −λiσ(t)R

−1BK1

∗ 0

]
η̂i (t)

(13)
where η̂i (t) =

[
ηTi (t) , ηTi (t− τ (t))

]T
.

Based on Assumption 3, V̇2(t) can be written as

V̇2(t) ≤ ηT (t)
(
IN ⊗ Ω−1

)
η (t)

− (1− δ) ηT (t− τ (t))
(
IN ⊗ Ω−1

)
η (t− τ (t))

=
N∑
i=1

η̂Ti (t)

[
Ω−1 0

0 − (1− δ) Ω−1

]
η̂i(t)

(14)

V̇3 (t) = ση̇T (t)
(
IN ⊗X−1

)
η̇ (t)

−
∫ t
t−σ η̇

T (s)
(
IN ⊗X−1

)
η̇ (s) ds

(15)

Let $i =
[
S , − λiσ(t)BK1

]
, the first half of the equation

(15) is given as

ση̇T (t)
(
IN ⊗X−1

)
η̇ (t) = σ

N∑
i=1

η̂Ti (t)$T
i X
−1$iη̂i (t)

(16)

From Assumption 4 and Lemma 2. The latter part is given
as

−
∫ t
t−σ η̇

T (s)
(
IN ⊗X−1

)
η̇ (s) ds

≤ −
∫ t
t−τ(t)

η̇T (s)
(
IN ⊗X−1

)
η̇ (s) ds

=
N∑
i=1

(
−
∫ t
t−τ(t)

ηTi (t)X−1ηi (t) ds
)

≤
N∑
i=1

η̂Ti (t)

([
MT

1 +M1 −MT
1 +M2

∗ −MT
2 −M2

]
+σ

[
MT

1

MT
2

]
X−1 [M1,M2]

)
η̂i (t)

(17)

Define M1 = −R−1,M2 = Ω−1, form (12) to (17), ones
get

V̇ (t) 6
N∑
i=1

η̂Ti (t)Ziη̂i(t) (18)

where

Zi = Ti + σ$T
i X
−1$i + σ

[
−R−T

Ω−T

]
X−1

[
−R−1,Ω−1

]
,

Ti =

[
Ti11 Ω−1 +R−1 − λiσ(t)R

−1BK1

∗ −(3− δ) Ω−1

]
,

Ti11 = −2R−1 +R−1S + STR−1 + Ω−1.

It can be verified by Schur complement lemma, Zi < 0 is
equivalent to Ψi < 0

Ψi =

 Ti σ$T
i σ

[
−R−1 −Ω−1

]
∗ σS−1 0
∗ ∗ −σS−1

 < 0

Choosing Γ =
[
R 0
Ω Ω

]
and Γ̄ = diag {T, I,X}, then

one gets

Γ̄TψiΓ̄ =

 ΓTTΓi σΓT$T
i σ

[
0 X

]
∗ σX 0
∗ ∗ −σX


Based on the calculated K1 = K̄1Ω−1 and Lemma

3,
∏(

λ̄i
)

< 0 are equivalent to
∏(

λiσ(t)

)
< 0

(i = 2, 3, · · · , N, σ(t) = 1, 2, · · · , p). Then according to
Schur complement lemma,

∏(
λiσ(t)

)
< 0 if and only if

Γ̄TψiΓ̄ < 0. One gets

lim
t→∞

ζ̃ (t) = 0 (19)

Therefore observer’s error ζ̃ (t) converges to zero as t→
∞ with both communication delays and switching interaction
topologies. This completes the proof.

Consider the following observer-based group
formation-tracking protocol for follower i (i ∈ {Ξī + 1,
Ξī + 2, · · · ,Ξī + nī}) in subgroup ī (̄i = {1, 2, · · · , g})

uīi (t) = K2x
ī
i (t) +K3

(
ζ̂ īi (t) + hīi (t)

)
+ rīi (t) (20)

where K2 and K3 are the constant matrix, rīi (t) ∈ Rm is
the compensation input for the group formation tracking.
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It is verified that rank(B) = m, Let Γ =
[
BT1 , B

T
2

]T
with

B1 ∈ R(n−m)×n and B2 ∈ R(n−m)×n. B2B = 0(n−m)×m
and B1B = I(n−m)×m.

Algorithm 1. Steps of designing the gain matrix
Step 1: For the given formation, check the following

formation feasibility condition.

lim
t→∞

(
B2Ah

ī
i (t)−B2ḣ

ī
i (t)

)
= 0 (21)

If (21) is feasible, then continue; otherwise, the Algorithm
stops, choose another formation.

Step 2: The formation compensation input rīi (t) is defined
as

rīi (t) = B1ḣ
ī
i (t)− (B1A)hīi (t) (22)

Step 3: Choose suitable K1 for state observer ζ̂ īi (t)
under the influence of time-varying delays and switching
interaction topologies.

Step 4: The gain matrix K2 is design to make A+BK2

is Hurwitz, and K3 = −K2.
Theorem 2: If there exists a formation satisfying (21),

MASs (2) and (1) are said to achieve the group formation
tracking with time-varying delays and switching interaction
topologies under the protocol designed by Algorithm 1.

Proof: Based on protocol (20), the followers systems
can be written as

ẋīi (t) = (A + BK2)xīi (t)+BK3ζ̂
ī
i (t)+BK3h

ī
i (t)+Brīi (t)

(23)
Define observer error eīi (t) = ζ̂ īi (t)− (1⊗ In) z ī0 (t) and

group formation-tracking error of follower i in subgroup ī
denotes by φīi (t) = xīi (t)− hīi (t)− ζ īi (t).

From Algorithm 1, one gets

φ̇īi (t) = (A+BK2)φīi (t) +BK3e
ī
i (t)

+Ahīi (t)− ḣīi (t) +Brīi (t)
(24)

Because the formation feasibility condition (22) is satis-
fying, it can be verified that

lim
t→∞

(
B2Ah

ī
i (t)−B2ḣ

ī
i (t) + B2Br

ī
i (t)

)
= 0 (25)

Based on calculate compensation input, one has

B1Ah
ī
i (t)−B1ḣ

ī
i (t) + B1Br

ī
i (t) = 0 (26)

Therefore, form (25) and (26), it can be obtained that

Ahīi (t)− ḣīi (t) +Brīi (t) (27)

Note that based on Theorem 1 lim
t→0

(
eīi (t)

)
= 0 and A+

BK2 is Hurwitz, thus lim
t→0

(
φīi (t)

)
= 0, which means the

group formation tracking error is converge to zeros and the
systems are said to realize the group formation tracking under
the influence of both time delays and switching topologies.
This complete the proof of Theorem 3.

Remark 1: According to Theorem 2, only the formation
satisfying the formation feasibility condition can be realized.
And based on the protocol, the group formation track-
ing problem in a more complex environment is proven to
achieve.

IV. NUMERICAL SIMULATIONS

In this section, an illustrative simulation is shown to verify
the effectiveness of the proposed protocol and algorithm.

Consider a MAS with 13 agents and divided into
3 subgroups. Let V1 = {1, 2, 3}, V2 = {4, 5, 6} and
V3 = {7, 8, 9, 10} denote the followers of each subgroup.
The nodes number of each group are defied as n1 = 3, n2 =
3, n3 = 4. Moreover, three groups of the followers track the
trajectory of each leader. Let τ (t) = 0.05 + 0.01cos (t). The
switching interaction topologies are shown in the Fig. 1

1

-1

1
-1

-1
1

(a) G1

1

-1

1
-1

(b) G2

Fig. 1: Switching topologies

The system matrixes of the MAS are given as

A =

 0 1 1
1 2 1
−2 −6 −3

, B =

 0 −1
−1 0
0 0


The desired formations for each group are shown as follow

hīi (t) =


r sin

(
t+ (i−1)2π

nī

)
−r cos

(
t+ (i−1)2π

nī

)
r cos

(
t+ (i−1)2π

nī

)


where i = {1, 2, · · · , 10}, ī = {1, 2, 3} and r = 15m. It can
be obtained that the formation tracking feasibility conditions
are satisfied. The formation compensation inputs are given
as rīi (t) = 0.

Based on Algorithm 1, the gain matrixes are given as
following

K1 =

 0.4688 0.5862 0.4935
0.0096 0.6443 0.0808
0.0878 −0.7426 −0.0889

,

K2 =
[

0.1 2.3 0.7
−2.7 −0.1 −0.9

]
,

K3 =
[
−0.1 −2.3 −0.7
2.7 0.1 0.9

]
.

The initial states of the leaders and followers are chosen
as xīi (0) = 2 (Θ− 0.5) (i = {1, 2, · · · , 10} ; ī = {1, 2, 3})
and z ī0 (0) = 2 (Θ− 0.5) (̄i = {1, 2, 3}), where Θ is a
pseudorandom value that satisfies the uniform distribution
between (0, 1). The initial value of the observes are zero.

Fig. 2 shows the state snapshot of 13 agents with t =
0s and 48s, respectively. Each group formation is denoted
by different color. Fig. 3 denotes that the state observers’
error can converge to zero within t = 50s, which means
the observer for each follower can estimate the state of the
leader’s state in its subgroup. In Fig. 4, group formation
tracking error is also convergent, therefore, the three groups
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(a) t = 0s (b) t = 48s

Fig. 2: Snapshots of seven agents (t = 0s; t = 48s)
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Fig. 3: group formation tracking error within t = 50s
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Fig. 4: state observers’ error t = 50s

of the MASs can achieve the group formation-tracking at
last.

V. CONCLUSIONS

Time-varying group formation tracking problems under
the influence of both communication delays and switching
topologies are investigated in this paper. To solve the multiple
constraint conditions, a distributed observer is proposed for
each subgroup follower to evaluate the state of leader in the
subgroup and the designing approach is also put forward
based on LMI technique. Then, the effectiveness of the
ability to estimate is demonstrated and an observer-based
protocol is given for each follower. Moreover, the conver-
gence of the group-formation tracking based on the proposed
controller is also presented, which means the systems can
realize the group-formation tracking problems with both
varying time-delays and switching network.
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