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Abstract—This paper presents a novel trajectory optimization
method for the 6-degrees-of-freedom powered landing problem
in aerospace guidance and control. The method combines ma-
chine learning and convex optimization to achieve real-time
performance. Specifically, we formulate the powered landing
problem as an optimal control problem and transform it into
a convex optimization problem. To enhance the state-of-the-art
sequential convex programming (SCP) algorithm, we use a deep
neural network as an initial trajectory generator to provide a
satisfactory initial guess for the SCP algorithm. Simulation results
show that the proposed method achieves precise guidance of the
vehicle to the landing site. Monte Carlo tests demonstrate that it
can save an average of 40.8% of the computation time compared
to the SCP method. Therefore, the proposed scheme is suitable
for real-time applications in the aerospace industry.

Index Terms—Trajectory optimization, sequential convex pro-
gramming, neural networks, real-time computing, launch vehicle
landing

I. INTRODUCTION

Convex optimization-based guidance methods have become
an increasingly prevalent and effective approach in the field of
aerospace guidance and control [1]–[5]. By converting optimal
control problems into convex optimization problems via con-
vexification, state-of-the-art convex optimization solvers can
efficiently solve them. Nonetheless, when dealing with optimal
control problems featuring general nonconvexities, such as the
intricate 6-degrees-of-freedom (6-DoF) dynamics, researchers
frequently utilize sequential convex programming (SCP) meth-
ods [2]–[4]. The SCP method tackles the original nonconvex
optimal control problem by linearizing it and resolving a
series of locally convex approximations. Recent research has
yielded theoretical guarantees for the locally optimal solutions
obtained by SCP methods, along with assured convergence
properties [6], [7]. This technique has been successfully
employed in numerous aerospace guidance applications, in-
cluding atmospheric reentry [1], missile guidance [8], rocket
launch [9], and optimal landing [4], [10]. Furthermore, the

SCP method is suitable for various nonlinear systems, as
its Taylor expansion-based linearization can manage different
nonlinearities. However, the SCP method’s performance is
heavily reliant on the quality of the initial reference trajectory.
To address this issue, this paper introduces an initial trajectory
generator using a deep neural network (DNN) to enhance
the initial reference trajectory’s quality and bolster the SCP
method’s performance.

The optimal landing problem represents a fundamental
optimal control problem with applications in Mars exploration
missions and reusable rocket missions [4], [10]. Recently,
researchers have explored more general optimal landing prob-
lems that incorporate 6-DoF dynamics [2]–[4], [11]. In [2],
the authors proposed an SCP algorithm for a generalized 6-
DoF free-final-time powered descent guidance problem while
considering state-triggered constraints. In [3], an SCP algo-
rithm was presented for the 6-DoF powered descent guidance
problem with dual quaternion-based dynamics. To further
enhance the computational efficiency of SCP methods, this
paper introduces a data-driven SCP approach that combines
SCP with deep neural networks (DNNs).

The proposed data-driven SCP method leverages the power
of DNNs to provide high-quality initial reference trajectories.
By training the DNN with a diverse set of optimal trajectories
obtained from various initial conditions and constraints, the
method can generate accurate initial guesses, reducing the
number of iterations required for SCP convergence. This
approach not only improves the computational performance
of SCP methods in 6-DoF powered landing problems but
also demonstrates potential applicability to a wide range of
aerospace guidance and control problems. Additionally, the
integration of DNNs into the SCP framework paves the way
for further exploration of machine learning techniques in the
field of aerospace guidance and control, potentially leading to
more sophisticated and efficient solutions.

The remainder of this paper is organized as follows. Sec. II
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shows the formulation of the 6-DoF landing problem. Sec. III
introduces the SCP algorithm. Sec. IV gives the details of the
proposed initial trajectory generator, along with the proposed
SCP algorithm. Sec. V presents the test results of the proposed
guidance approach. Sec. VI concludes the whole paper.

II. PROBLEM STATEMENT

In this section, the free-final-time 6-DoF powered landing
guidance problem is formulated as a nonconvex optimal con-
trol problem, while considering the aerodynamic effects and
the multiple constraints.

A. Notation
In this paper, we use the following notations: the vector dot

product is denoted by ·, the vector cross product is represented
by ×, and the Euclidean norm is denoted by |·|. Time is
denoted by t ∈ R, with the initial time t0 defined as the
time at which the guidance problem begins and the terminal
time tf defined as the time at which the vehicle reaches the
terminal conditions. Subscripts I and B represent parameters
expressed in the inertial frame FI and the body-fixed frame
FB, respectively.

B. Dynamics
In this paper, we make the following simplifying assump-

tions for the powered landing problem: since most powered
landing maneuvers occur at velocities far below orbital speeds
and the initial landing position is typically only a few kilo-
meters away from the landing site, we neglect the effects of
planetary rotation and assume a uniform gravitational field.
We also do not consider higher-order phenomena such as fuel
slosh and elastic structural modes [2]–[4]. As a rigid body,
the vehicle has a constant center of mass and moment of
inertia. Additionally, we assume that the ambient atmosphere
has constant density and pressure, and we do not account for
wind effects. Moreover, we assume that the center of mass is
fixed to FB. The attitude dynamics in this paper are established
based on quaternions, using the scalar-first convention.

The mass-depletion dynamics are given by

ṁ(t) = −α∥TB(t)∥ − β, (1)

where α
∆
= 1/(Ispg0) and β

∆
= αPatmSne.

The translational dynamics are given as follows

ṙI(t) = vI(t), (2)

v̇I(t) =
1

m(t)
(CBI(t)TB(t) +AI(t)) + gI , (3)

where CBI(t)
∆
= CT

IB(t) = CIB (q∗
IB(t)), and q∗

IB(t) is the
conjugate of qIB(t). The aerodynamic force AI(t) is modeled
as follows

AI(t) = −1

2
ρ∥vI(t)∥SACAvI(t), (4)

where CA is a diagonal matrix for most vehicles that are
approximately axisymmetric. The attitude dynamics are given
by

q̇IB(t) =
1

2
Ω (ωB(t)) qIB(t), (5)

JBω̇B(t) = MB(t)− ωB(t)× JBωB(t), (6)

where Ω (·) is a skew-symmetric matrix defined for the
quaternion kinematics (5).

C. Nonconvex Optimal Control Problem

We conclude this section by completing the statement of
the nonconvex optimal control problem. The objective function
and boundary conditions of the optimal control problem can be
designed according to the scenario and mission requirements.
In this work, we mainly focus on the minimum-fuel problem,
which is equivalent to maximizing the terminal mass. The
initial conditions can be given as

m (t0) = m0, rI (t0) = rI0,vI (t0) = vI0, (7)

qIB (t0) = q0,ωB (t0) = ωB0, (8)

where m0, rI0, vI0, q0, ωB0 are the prescribed mass, position,
velocity, quaternion, and angular velocity at the initial time,
respectively. At the terminal time, the goal is to land the
vehicle at the landing site steadily and safely. The terminal
conditions are given by

rI (tf ) = 0,vI (tf ) = 0, qIB (tf ) = qi,ωB (tf ) = 0. (9)

The state constraints and control constraints can be found in
[2].

III. SEQUENTIAL CONVEX PROGRAMMING

This section introduces an SCP algorithm to solve optimal
landing problem. In Sec. III-A, optimal control is converted
into a discrete-time convex optimization subproblem. In Sec.
III-B, the SCP algorithm is presented, which iteratively solves
a sequence of subproblems to get a converged solution.

A. Convex Formulation

1. Normalization
The dynamics equation in the original problem is a non-

convex factor. Thus, it should be converted into a convex
formulation. The continuous-time dynamics can be represented
as

ẋ(t) = f(x(t),u(t)), ∀t ∈ [t0, tf ] , (10)

where x(t) ∈ Rnx and u(t) ∈ Rnu denote the state and
control vectors, respectively, and f : Rnx × Rnu → Rnx

denotes the continuous-time nonconvex dynamics. To begin,
the scaled time τ ∈ [0, 1] is defined to equivalently convert the
original problem into a free-final-time problem. By applying
the chain rule, the dynamics can be rewritten as

x′(τ) = tff(x(τ),u(τ))
∆
= F (x(τ),u(τ), tf ). (11)

2. Linearization and Discretization
To formulate a convex problem, the equality constraint

functions must be affine. Hence, Eq. (11) is linearized as
follows

x′(τ) ≈ A(τ)x(τ) +B(τ)u(τ) + s(τ)tf + c(τ), (12)
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A(τ)
∆
=

∂F

∂x

∣∣∣∣
z̃(τ)

, B(τ)
∆
=

∂F

∂u

∣∣∣∣
z̃(τ)

, s(τ)
∆
=

∂F

∂tf

∣∣∣∣
z̃(τ)

, (13)

c(τ)
∆
= −A(τ)x̃(τ)−B(τ)ũ(τ), (14)

where z̃(τ)
∆
=

[
t̃f x̃T (τ) ũT (τ)

]T
is the reference

trajectory.
The linearization of the thrust magnitude lower bound

constraint can be found in [4], and the discretization method
is as same as [2].

The trust-region constraint is introduced to ensure that the
optimized trajectory lies in a region where the linearization is
valid. The trust-region constraint is expressed in a quadratic
form as

∥xk − x̃k∥2 + ∥uk − ũk∥2 ≤ σk, (15)

where k ∈ {1, 2, . . . , N}, and σk is a trust-region radius. To
allow the optimization process to select the trust region, the
cost function is augmented with the trust-region radii σ ∈ RN

+

as
Jtr = wtr∥σ∥1, (16)

where wtr ∈ R++ is a weighing term, and ∥·∥1 denotes one-
norm.

The linearization-based method also suffers from the artifi-
cial infeasibility issue [2]. To solve this issue, a virtual control
term µk ∈ Rnx is added into the discrete-time linearized dy-
namics. The virtual control should be only used for constraint
satisfaction. Thus, the cost function is augmented with a large
weighing term wvc ∈ R++ as

Jvc = wvc∥V ∥1, (17)

where V
∆
=

[
µ1 µ2 . . . µN−1

]
∈ Rnx×(N−1).

B. Sequential Convex Programming Algorithm
As mentioned in Sec. III-A, the SCP algorithm is an iterative

algorithm. In each iteration, the algorithm uses a solver for
convex optimization to efficiently solve the convex subproblem
[2]–[5], [9]. In this subsection, we will introduce how the
algorithm is initialized and terminated.

1. Initialization
In this paper, an initial trajectory generator is proposed in

Sec. IV. The proposed method is based on DNN and uses the
pre-computed results to train the neural network so that it can
give a satisfactory initial trajectory guess. The details of the
proposed initial trajectory generator will be introduced in Sec.
IV.

2. Convergence Criteria
The iteration process terminates when convergence criteria

are met. The convergence criteria are given as

Jtr(σ) ≤ ϵtr, (18a)
Jvc(V ) ≤ ϵvc, (18b)

where ϵtr ∈ R++ and ϵvc ∈ R++ are the convergence
tolerances, which can be user-specified. The convergence
criterion (18a) measures the difference between the solutions
of two consecutive iterations. Additionally, the criterion (18b)
guarantees that the solution meets the dynamics.

IV. INITIAL TRAJECTORY GENERATOR

In this section, the initial trajectory generator based on
the DNN is proposed, which can significantly reduce the
computation time of the SCP algorithm. In general, we use
straight-line initialization to initialize the SCP algorithm. The
algorithm is used to solve guidance problems with various
initial conditions. The obtained solutions are collected to
construct a data set. The data set is used to train the DNN-
based generator so that the generator can give a satisfactory
initial guess trajectory. In Sec. IV-A, the construction of
the data set is introduced. The structure of the DNN-based
generator is presented in Sec. IV-B.

A. Data Set

1. Data Set Construction
Disturbing the initial state of the vehicle with the uniformly

distributed stochastic parameter ξ ∈ Rnx , the various guidance
problems with various initial states can be obtained. The
disturbed initial state can be expressed as

xn
1 = x1 + ξn, ∀n ∈ {1, 2, . . . , Ntra}, (19)

where the superscript n denotes the n-th perturbation, Ntra

is the number of trajectories in the data set, and x1
∆
=[

m0 rTI0 vT
I0 qT

0 ωT
B0

]T
. Each perturbation gener-

ates a guidance problem. The SCP algorithm presented in Sec.
III is used to solve the various guidance problems. As a result,
the data set contains Ntra optimized trajectories.

B. Trajectory Generator Structure

Motivated by the sequence model prediction in natural
language processing [12], the initial trajectory is modeled
as a sequence model. A frame of the trajectory is defined
as (xk,uk), for k ∈ {1, 2, . . . , N}. The DNN is used to
recurrently predict each frame of the trajectory until an N-
frame trajectory is generated. Given the last frame, the DNN
can predict the next frame of the trajectory according to

(xk+1,uk+1) = Nettra(xk,uk), ∀k ∈ {1, 2, . . . , N − 1}.
(20)

The generated trajectory can be used as the initial trajectory
of SCP.

The structure of the DNN is important for the performance
of the generator. In this paper, a variety of structures are tested
in Sec. V. According to the test results, a five-hidden-layers
structure with 256 units per layer is finally selected. Further,
the Rectified Linear Unit (ReLU) is adopted as the activation
function, and the DNN has NL layers in total.

V. RESULTS

In this section, the test results are presented to demonstrate
the effectiveness and performance of the proposed guidance
method. In Sec. V-A, the constructed data set is presented. In
Sec. V-B, the details of the training process are introduced. In
Sec. V-C, the performance of the proposed guidance method
is illustrated via simulations. The Monte Carlo analysis is

187
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on July 15,2024 at 06:37:06 UTC from IEEE Xplore.  Restrictions apply. 



performed to test the performance of the algorithm. The
proposed algorithm is also compared with the state-of-the-art
SCP algorithm to highlight the improvement.

A. Data Set

The data set is constructed via the SCP method mentioned in
Sec. III and IV-A. The weight parameters in Eqs. (16) and (17)
are selected as wtr = 0.5 and wvc = 1×105, respectively. The
convergence tolerances ϵtr and ϵvc in Eqs. (18a) and (18b) are
both selected as 5×10−4. The initial conditions and parameters
of the landing problem are listed in Table I. The vehicle’s
moment of inertia is diag([4× 106, 4× 106, 1× 105]) kg ·m2.

TABLE I
INITIAL CONDITIONS AND PARAMETERS

Parameter Value Parameter Value
m0 (kg) 30000 Tmax (N) 800000

rI0 (m) [0 0 1500]T Tmin (N) 320000

vI0 (m/s) [0 0 − 80]T t̃f (s) 18

q0 qi gI (m/s2) [0 0 − 9.81]T

ωB0 (deg/s) [0 0 0]T SA (m2) 10

TB0 (N) [0 0 Tmin]
T CA diag([3, 3, 1])

mmin (kg) 22000 ρ (kg/m3) 1.225
N 30 Isp (s) 282

ωmax (deg/s) 30 Patm (Pa) 0
γc (deg) 20 Sne (m2) 0

θmax (deg) 80 dT,B (m) [0 0 − 14]T

ϑmax (deg) 20 dA,B (m) [0 0 2]T

As discussed in Sec. IV-A, a uniformly distributed term
ξ

∆
=

[
ξm

T ξr
T ξv

T ξq
T ξω

T
]T ∈ Rnx is added to

the initial state of the vehicle to generate various guidance
problems. The ranges of the random parameters are listed in
Table II.

TABLE II
RANGES OF RANDOM PARAMETERS

Parameter Range
ξm (kg) 0

ξr (m) [[−500, 500] [−500, 500] 0]T

ξv (m/s) [[−40, 40] [−40, 40] [−20, 20]]T

ξq Euler2Quater∗([[−30, 30] [−30, 30] 0]T )− qi
ξω (deg/s) [[−20, 20] [−20, 20] 0]T

* Function that converts Euler angles (deg) to quaternions.

The data set can be obtained by solving various guidance
problems. In this paper, the data set contains 48333 trajecto-
ries, 45000 of which are used for training and 3333 for testing.

B. Training Results

To determine the optimal hyperparameters for our training
process, we evaluated the performance of different hyperpa-
rameters. We conducted a total of 13 trials, and their details
are listed in Table III. The loss functions during the training
process are shown in Figs. 1a-1b. Notably, trials 12 and 13
utilized learning rate decay to improve convergence. Trials 1-
11 were trained for 500 epochs, while trials 12 and 13 were
trained for 800 epochs to test the effect of learning rate decay.
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(a) Training loss
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Fig. 1. Training process of trials 10-13. 500 epochs of training are carried
out in trials 10 and 11, and 800 epochs of training are carried out in trials 12
and 13.

TABLE III
INFORMATION OF TRIALS

Trial Learning Rate Unit1 Layer2 Batch3 WD4

1 1× 10−3 128 5 128 –
2 1× 10−4 128 5 128 –
3 1× 10−5 128 5 128 –
4 1× 10−4 64 5 128 –
5 1× 10−4 256 5 128 –
6 1× 10−4 256 5 256 –
7 1× 10−4 256 5 64 –
8 1× 10−4 256 5 32 –
9 1× 10−4 256 4 128 –

10 1× 10−4 256 6 128 –
11 1× 10−4 256 6 128 1× 10−5

12 1× 10−4 256 6 128 –
13 1× 10−4 256 6 128 1× 10−5

1 Number of units in each layer of the DNN.
2 Number of DNN layers.
3 Batch size.
4 Constant λ in weight decay.

Among the trials we conducted, trial 10 exhibited the lowest
training and test losses. Due to limited space, we omitted
the results of trials 1-9. From Figs. 1a and 1b, we observed
that trial 12, which used the same hyperparameters as trial
10, achieved a lower training loss but had a test loss similar
to that of trial 10, indicating overfitting. To address this, we
employed weight decay. Trial 13 achieved the best test loss
and acceptable training loss, suggesting that the DNN has
satisfactory generalization ability. Therefore, in Sec. V-C, we
will use the DNN obtained from trial 13 as the initial trajectory
generator.

C. Guidance Performance

We validated the proposed guidance method through two
missions with different initial conditions. The solutions for
these two missions are shown in Fig. 2. As demonstrated,
the proposed algorithm successfully guided the vehicle to
the landing site, satisfying the approach cone constraint, and
ensuring the minimum mass constraint. The computation time
for Mission 1 and Mission 2 was 0.62s and 0.94s, respectively,
meeting the requirement of solving the trajectory online in
less than 1s [2]–[4]. Specifically, in Mission 1, the DNN took
0.11s to generate the initial trajectory, and the SCP algorithm
took 0.51s to solve the guidance problem after two iterations.
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Fig. 2. Solutions of the missions.

SCPDNN-SCP SCPDNN-SCP

Fig. 3. Iterations and total computation time.

In Mission 2, the DNN took 0.17s to generate the initial
trajectory, and the SCP algorithm took 0.77 s to solve the
guidance problem after three iterations.

To further analyze the performance of the proposed method,
we conducted Monte Carlo analysis using random parameter
selections similar to those used to generate the dataset in Sec.
V-A. We compared the proposed method with the state-of-the-
art SCP method and conducted 1000 Monte Carlo simulations.
Fig. 3 shows the results, with the proposed method labeled
DNN-SCP. As demonstrated, the proposed method’s real-time
performance was better than that of the SCP method, with
991 tests out of 1000 meeting the real-time requirements.
Moreover, the median computation time of the proposed
method was almost half that of the SCP method, with an
average computation time of 0.7035 s, reduced by 40.8%
compared to the SCP method.

VI. CONCLUSION

In this paper, we propose a real-time trajectory optimization
method that leverages data-driven initialization. Our method
combines the SCP algorithm with neural networks, considering
aerodynamic effects within the framework of 6-DoF dynamics.
Rather than using neural networks as the controller, we use a
DNN as an initial trajectory generator to generate the required
initial trajectory for the SCP algorithm. This significantly
reduces computation time compared to state-of-the-art SCP
methods, saving 40.8% computation time. Moreover, 99.1% of
the test cases take less than 1 s, making the proposed method
more suitable for online real-time applications. In extensive
Monte Carlo tests, our proposed approach outperforms state-
of-the-art SCP methods.

REFERENCES

[1] X. Liu, Z. Shen, and P. Lu, “Entry trajectory optimization by second-
order cone programming,” Journal of Guidance, Control, and Dynamics,
vol. 39, no. 2, pp. 227–241, 2016.

[2] M. Szmuk, T. P. Reynolds, and B. Açıkmeşe, “Successive convexifi-
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and J. M. Carson, “Dual quaternion-based powered descent guidance
with state-triggered constraints,” Journal of Guidance, Control, and
Dynamics, vol. 43, no. 9, pp. 1584–1599, 2020.
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