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Abstract— Formation-containment control problems for gen-
eral linear multi-agent systems with time-varying delays and
switching topologies are studied. The leaders are required to
accomplish a given time-varying formation and the followers
are allowed to enter the convex envelope spanned by those
of the leaders simultaneously. Firstly, formation-containment
protocols based on distributed state observer with switching
interaction topologies and time-varying delays are presented for
leaders and followers respectively, where an edge-based state
observer is presented for each follower to estimate the whole
states of all the leaders under the influences of switching in-
teraction topologies and time-varying delays. Then, formation-
containment problems are transformed into asymptotic stability
problems. Furthermore, an algorithm to determine the gain
matrices in the protocols is given based on linear matrix
inequality technique and common Lyapunov–Krasovskii sta-
bility theory. Sufficient conditions for multi-agent systems to
achieve formation-containment under the designed protocol
are proposed. Finally, numerical simulations are provided to
demonstrate theoretical results.

Index Terms— Formation-containment control; general lin-
ear multi-agent systems; time-varying delays; switching topolo-
gies

I. INTRODUCTION

In recent years, cooperative control of multi-agent systems
(MASs) has been widely applied in different fields. Its
research field could be divided into different categories,
where consensus control [1], [2], formation control [3],
[4], containment control [5], [6], and formation-containment
control [7] are four branches of the most attracted ones.

Formation control problem is a fundamental problem and
has been studied a lot during the past decades. With the
extensive study in consensus-based theory[8], [9], more and
more researches try to use consensus-based methods to solve
the formation problems. However, in order to meet the prac-
tical environment such as the congestion of the interaction
channel and communication range constraints, communica-
tion delays and switching topologies emerge. By using the
state information of each agent and neighboring agents, Dong
et al. in [10] constructed a protocol for general-linear MASs
with time-varying delays. Using local information of the
neighboring agents, Xiao et al. in [11] proposed an ideal
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protocol to solve the time-varying formation control problem
for MASs with both time-varying delays and switching
interaction topologies, which means formation control has
been studied in a more practical field.

In containment control problem, agents are classified into
leaders and followers. The aim of containment control is that
followers are required to converge to the convex hull spanned
by the leaders. Ji in [12] proposed a hybrid “stop-go”
control strategy for first-order MASs to achieve containment.
Containment problems with time-varying delays or stochastic
topologies were discussed in [13], [14]. However, in contain-
ment control, there is no interaction among the leaders. In
some practical scenarios, the leaders are allowed to achieve
a desired formation and and the followers should enter the
convex envelope formed by the leaders. Based on formation
control and containment control, a more interesting research
named formation-containment problem arises. Time-varying
delays on formation-containment control were considered
in [15]. Therefore, formation-containment problems under
the influence of both time-varying delays and switching
interaction topologies are still open.

Motivated by the above facts, formation-containment con-
trol problems for general linear MASs with time-varying
delays and switching interaction topologies are investi-
gated. Compared with the previous researches on formation-
containment, the new contributions of this paper are twofold.
First, formation-containment control can be accomplished
with both time-varying delays and switching topologies for
general-linear MASs. In [15], only time-varying delays are
considered. Second, due to the dynamic characteristics of the
leaders and the impact of the formation on the followers, the
formation-containment control problem cannot be directly
decoupled into the formation control and containment control
problems. In contrast to formation control problems in [10],
[11], the states of the followers are able to stay in the convex
envelope formed by leaders. While in [7], [14], they only
studied the containment control problems. The difficulty of
formation-containment control is greater than the sum of the
above mentioned formation and containment control.

Throughout this paper, I represents an identify matrix
with appropriate size. ⊗ denotes Kronecker product. 1 is
used to describe a column vector with 1 as its element.
diag {D1, · · · , DN} is used to present a diagonal matrix.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

In this section, the basic graph theory is given and the
statement of problem is proposed.
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A. Preliminaries

A weighted undirected graph G can be represented by
{V, T,W} , where V = {v1, v2, · · · vN} is a set of
nodes, T ⊆ {(vi, vj) : vi, vj ∈ V } is the set of edges, and
W = [aij ] ∈ RN×N is a weighted adjacency matrix.
Let eij = (vi, vj) denotes the edge of G and wij denotes
the nonnegative element with eji. Define wij > 0 if
and only if eji ∈ T and wij = 0 otherwise. Ni =
{vj ∈ V : (vj , vi) ∈ T} is the set of neighbors of node vi.
The Laplacian matrix L is defined as L = D − W ,
where D = diag

{∑N
j=1 w1j ,

∑N
j=1 w2j , · · · ,

∑N
j=1 wNj

}
.

A path from node vi1 to vik is a series of ordered edges
(vi1, vi2), (vi2, vi3), · · · , (vik−1, vik). The definition of
undirected graph is that vij ∈ T implies vji ∈ T and
wij = wji. The undirected graph is said to be connected
if there is a path between any distinct pair of nodes.

Definition 1: An agent is called a leader if it has no
neighbors and a follower if it has at least a neighbor.

Assumption 1: Each switching topology GFσ(t) among the
followers is connected and undirected.

Assumption 2: There exists at least one follower which
has access to all leaders’ states at each possible graph.

Lemma 1: ([17]) If G is connected, then L has a simple
0 eigenvalue with 1N

/√
N as its right eigenvector, and all

the other eigenvalues are positive.
The index set of all the switching graphs is represented

by H = {1, 2, · · · , h}. There exists an infinite sequence of
non-overlapping time intervals [ tk, tk+1) with t0 = 0, tk −
tk+1 > Td > 0. Td is said as the dwell time, during which the
graph keeps fixed. The graph changes at switching sequence
tk+1. Let σ(t) : [0,∞)→ {1, 2, · · · , h} denotes a switching
signal. Gσ(t) and Lσ(t) represent the graph and Laplacian
matrix at t. Let LFσ(t) and LFσ(t) denote Laplacian matrix
among the followers and leaders.

B. Problem description

Consider a MAS with M leaders and N
followers. Let OE = {1, 2, · · · ,M} and OF =
{M + 1,M + 2, · · · ,M +N} denote the leader set
and follower set, respectively. The dynamics of the ith agent
can be expressed as{

żi(t) = Azi(t) +Bui(t) i ∈ OE
ẋi(t) = Axi(t) +Bui(t) i ∈ OF

(1)

where zi(t) and ui(t) (i ∈ OE) are the state and control input
of the ith leader, xi(t) and ui(t) (i ∈ OF ) are the state and
control input of the ith follower.

Definition 2: A time-varying formation is specified by
hE(t) = [hT1 (t), hT2 (t), · · · , hTM (t)] ∈ RMn. Leaders in
MAS(1) are said to realize time-varying formation hE(t) if
there exists a vector-valued function r (t) ∈ Rn such that

lim
t→∞

(zi (t)− r (t)− hi (t)) = 0 (i = 1, 2, · · · ,M) (2)

Where r (t) is called a formation reference function.
Definition 3: MAS described by (1) is said to achieve

state containment if there exist nonnegative constants

ρij (i ∈ OF , j ∈ OE) satisfying
∑M
j=1 ρij = 1, underlying

any bounded initial states, such that

lim
t→∞

(
xi(t)−

∑M

j=1
ρijzj(t)

)
= 0 (3)

Definition 4: MAS (1) is said to realize formation-
containment if for any give bounded initial states, there
is a vector-valued function r (t) ∈ Rn and nonnegative
ρij (i ∈ OF , j ∈ OE) satisfying

∑M
j=1 ρij = 1 so that for

any i ∈ OF and j ∈ OE (2) and (3) hold simultaneously.
Consider the following formation-containment protocol

with time-varying delays and switching topologies.
for i ∈ OE

ui (t) = K1zi (t) +K2

∑
j∈Ni

σ(t)

wij [(zj (t− τ (t))

−hj (t− τ (t)))− (zi (t− τ (t))−hi (t− τ (t)))]
(4)

for i ∈ OF

ui (t) = K3xi (t)−K4

M∑
j=1

ρi,j ξ̂i,j(t)

˙̂
ξi(t) = (IM ⊗ (A+BK1)) ξ̂i(t)

−K5

[
b
σ(t)
i

(
ξ̂i(t− τ(t))− z(t− τ(t))

)
+

M+N∑
k=M+1

wik(ξ̂i(t− τ(t))− ξ̂k(t− τ(t)))

] (5)

where ξ̂i(t) = [ξ̂Ti,1(t), ξ̂Ti,2(t), · · · , ξ̂Ti,M (t)]T with ξ̂i,j(t)
representing the ith follower’s estimate for the state of
jth leader. z(t) = [zT1 (t), zT2 (t), · · · , zTM (t)]T . Ki(i =
1, 2, 3, 4, 5) are the constant gain matrices. ρij is the prede-
fined nonnegative constant satisfying

∑M
j=1 ρij = 1, and the

nonnegative bσ(t)i > 0 if and only if follower i has access
to all leaders’ states at t, otherwise b

σ(t)
i = 0. τ(t) is the

time-varying delay.
Assumption 3: 0 6 τ(t) 6 σ and |τ̇(t)| 6 δ < 1, where

σ and δ are known constants.
The following lemmas are useful for analyzing the

formation-containment problem.
Lemma 2: ([18]) Let η(t) ∈ R2d be a vector-valued

function with first-order continuous-derivative entries. The
following integral inequality holds:

−
∫ t
t−τ(t) η̇

T (s)Sη̇(s)ds

≤ ςT (t)

[
MT

1 +M1

∗
−MT

1 +M2

−MT
2 −M1

]
ς(t)

+ τ(t)ςT (t)

[
MT

1

MT
2

]
S−1 [M1,M2] ς(t)

(6)

where M1,M2 ∈ R2d, S=ST > 0 , ς(t)=[ηT (t), ηT (t −
τ(t))]T , superscript ∗ is an item derived from symmetry
−M1+MT

2 .
Let Hσ(t) = Bσ(t) + L

σ(t)
F , σ(t) ∈ {1, 2, · · · , p}, where

Bσ(t) is a diagonal matrix which diagonal element is 0 or 1.
Lemma 3: ([11]) If each switching topology GFσ(t) is

connected, then the symmetric matric Hσ(t) at t associated
with GFσ(t) is positive define.
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Let, λ̄1 = min
{
λiσ(t)

}
, λ̄2 = max

{
λiσ(t)

}
, σ(t) ∈

{1, 2, · · · , p}, λiσ(t) is the eigenvalue of real symmetric
positive definite matrix.

Lemma 4: ([11]) For any i, σ(t) ∈ {1, 2, · · · , p}, Θi
σ(t) =

Φ0 + λiσ(t)Φ1 < 0 if and only if Θi = Φ0 + λ̄iΦ1 < 0
(i ∈ {1, 2}).

In the current paper, the following two problems for
MAS (1) with time-varying delays and switching topologies
are investigated. First, how to design the protocols and
state observer. Second, under what condition the formation-
containment can be achieved.

III. MAIN RESULTS

In this section, a novel formation-containment control
framework is put forward to handle MASs with time-
varying delays and switching interaction topologies. Firstly,
the formation-containment are transformed into asympotic
stability problems. Secondly, an Algorithm is proposed to
design the protocols and state observer. Finally, the stability
of the system and the convergence of observing are proved.

The Laplacian matrix Lσ(t) is given as

Lσ(t) =

[
LEσ(t) 0

LFEσ(t) LFσ(t)

]
where LEσ(t) ∈ RM×M , LFEσ(t) ∈ RN×M , and LFσ(t) ∈ RN×N .

Under protocol (4) the dynamic of closed-loop of leaders’
can be described

ż (t) = (IM ⊗ (A+BK1)) z (t)

−
(
LEσ(t) ⊗BK2

)
(z (t− τ (t))− h (t− τ (t)))

(7)

Under protocol (5) the closed-loop of followers’ can be
written as

ẋi(t) = (A+BK3)xi(t)−BK4

M∑
j=1

ρij ξ̂i,j(t) i ∈ OF (8)

Let ξ̃i,j(t) = ξ̂i,j(t) − zj(t) denotes the observing error
between ith observer and jth leader. Then (8) could be
rewritten as follows

ẋi(t)=(A+BK3)xi(t)−BK4

M∑
j=1

ρij ξ̃i,j(t)

−BK4

M∑
j=1

ρijzj(t)

(9)

Let z̃i (t) = zi (t) − hi (t) (i ∈ OE), z̃ (t) =[
z̃T1 (t) , z̃T2 (t) , · · · z̃TM (t)

]T
. It follows from (9) that

˙̃z (t) = (IM ⊗ (A+BK1)) z̃ (t)

−
(
LEσ(t) ⊗BK2

)
z̃ (t− τ (t))

+ (IM ⊗ (A+BK1))h (t)− (IM ⊗ In) ḣ (t)

(10)

Let U = [ū1, ū2, · · · , ūM ] be an orthogonal constant
matrix, where ū1 = 1M/

√
M , then form Lemma 1, one

could get UTLEσ(t)U = diag(0, ŨTLEσ(t)Ũ) , where Ũ =

[ū2, · · · , ūM ]. Let θ(t) = (ūT1 ⊗ In)z̃(t) and φ(t) = (ŨT ⊗

In)z̃(t) , then the leaders’ system can be divided into two
parts.

θ̇(t) = Ãθ(t)− 1√
N

(
1TN ⊗ In

)
ḣ(t)

+ 1√
N

(
1TN ⊗ (A+BK1)

)
h(t)

(11)

φ̇(t) = (IM−1 ⊗ Ã)φ(t)

− (ŨTLEσ(t)Ũ ⊗BK2)φ(t− τ(t))

+ (ŨT ⊗ (A+BK1))h(t)− (ŨT ⊗ In)ḣ(t)

(12)

Where Ã=A+BK1.
Lemma 5: [16] The leaders of MAS (1) achieve the time-

varying formation specified by hE(t). If and only if

lim
t→∞

φ (t) = 0 (13)
An Algorithm with five steps is proposed to design the

protocols and observer.
Algorithm 1. For MAS(1) to achieve the formation-

containment, Ki(i = 1, 2, 3, 4, 5) can be designed in these
steps.

Step 1: Choose suitable K1 to assign the eigenvalue of
A+BK1 at the closed left-half complex plane. If (A,B) is
controllable, we always have an appropriate K1.

Step 2: Solve LMI (14). If there exist positive symmetric
matrices RE , ΩE , SE and real matrix K̄2 for any λ̄Ei (i =
1, 2) , LMI (14) is feasible, the gain matric K2 = K̄2Ω−1;
otherwise , the Algorithm stops.

∏
(λ̄E

i ) =


Ξ11 Ξ12 Ξ13 0 RE

∗ Ξ22 Ξ23 σSE 0
∗ ∗ −σSE 0 0
∗ ∗ ∗ −σSE 0
∗ ∗ ∗ ∗ −ΩE

 < 0 (14)

where
Ξ11 = REÃ

T + ÃRE − λ̄E
i (BK̄2) − λ̄E

i (BK̄2)T − (1 − δ)ΩE ,
Ξ12 = RE − λ̄E

i BK̄2 − (2 − δ)ΩE ,

Ξ13 = σREÃ
T − σλ̄E

i (BK̄2)T ,
Ξ22 = −(3 − δ)ΩE ,
Ξ23 = −σλ̄E

i (BK̄2)T ,

Step 3: Choose suitable K3 to assign the eigenvalue of
A+BK3 at the left-half complex plan.

Step 4: Choose the suitable K4, following the equation
K4=K3 −K1.

Step 5: Solve LMI (15). If there exist positive symmetric
matrices RF , ΩF , SF and real matrix K̄5 for any λ̄Hi (i =
1, 2), LMI (15) is feasible, the gain matric K5 = K̄5Ω−1F ;
otherwise , the Algorithm stops.

∏
(λ̄F

i ) =


Ξ11 Ξ12 Ξ13 0 RF

∗ Ξ22 Ξ23 σSF 0
∗ ∗ −σSF 0 0
∗ ∗ ∗ −σSF 0
∗ ∗ ∗ ∗ −ΩF

 < 0 (15)

where
Ξ11 = RF Ã

T
F + ÃFRF − λ̄H

i K̄5 − λ̄H
i K̄

T
5 − (1 − δ)ΩF ,

Ξ12 = RF − λ̄H
i K̄5 − (2 − δ)ΩF ,

Ξ13 = σRF Ã
T
F − σλ̄H

i K̄
T
5 ,

Ξ22 = −(3 − δ)ΩF ,
Ξ23 = −σλ̄H

i K̄
T
5 ,

ÃF = IM ⊗A.
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Based on the Algorithm 1, the following Theorem can be
obtained.

Theorem 1: Using the protocols (4) and (5) designed
by Algorithm 1, MAS described by (1) with time-varying
delays and switching topologies can achieve the formation-
containment if the following time-varying formation feasi-
bility condition holds

(A+BK1) (hi (t)− hj (t))−
(
ḣi (t)− ḣj (t)

)
≡ 0 (16)

Proof:
Step 1: The leaders can achieve the desire formation.
Based on Lemma 5, let ϕ̇(t) = (IM−1 ⊗ Ã)ϕ(t) −

(ŨTLσ(t)Ũ⊗BK2)ϕ(t−τ(t)) denotes the switching system,
then φ̇(t) can be written as follow:

φ̇(t) = ϕ̇ (t)+(ŨT⊗(A+BK1))h(t)−(ŨT⊗In)ḣ(t) (17)

Construct the following common Lyapunov–Krasovskii
candidate function

VE(t) = VE1(t) + VE2(t) + VE3(t) (18)

where

VE1(t) = ϕT (t)
(
IM−1 ⊗R−1E

)
ϕ (t) ,

VE2(t) =
∫ t
t−τ(t) ϕ

T (s)
(
IM−1 ⊗ Ω−1E

)
ϕ (s) ds,

VE3(t) =
∫ 0

−σ
∫ t
t+µ

ϕ̇T (s)
(
IM−1 ⊗ S−1E

)
ϕ̇ (s)dsdµ.

Let Λσ(t) = diag(λ1σ(t), λ
2
σ(t), · · · , λ

N
σ(t)) , as we men-

tioned that ŨTLEσ(t)Ũ is symmetric, therefore , it is pos-
sible to find an orthogonal matrix Ũσ(t) which satis-
fying that ŨTσ(t)Ũ

TLEσ(t)Ũ Ũσ(t) = ΛEσ(t). Let η (t) =(
ŨTσ(t) ⊗ In

)
ϕ (t) =

[
ηT2 (t) , ηT3 (t) , · · · , ηTM (t)

]T
, and

η̂i (t) =
[
ηTi (t) , ηTi (t− τ (t))

]T
, then taking the time

derivative of VE(t) along the trajectory of (18),one has

V̇E1(t)=
M∑
i=2

η̂Ti (t)

[
RE
−1Ã+ ÃTRE

−1

∗
−λiσ(t)RE

−1BK3

0

]
η̂i (t)

(19)

From the Assumption 3, one gets

V̇E2(t) ≤ ηT (t)
(
IM−1 ⊗ Ω−1E

)
η (t)

− (1− δ) ηT (t− τ (t))
(
IM−1 ⊗ Ω−1E

)
η (t− τ (t))

=
M∑
i=2

η̂Ti (t)

[
Ω−1E 0

0 − (1− δ) Ω−1E

]
ϕ̂i(t)

(20)
Let $i =

[
Ã,− λiσ(t)BK3

]
, based on Assumption 3 and

Lemma 2, one has

V̇E3 (t) ≤
M∑
i=2

η̂Ti (t)

(
$T
i S
−1
E $i +

([
MT

1 +M1

∗
−MT

1 +M2

−MT
2 −M2

]
+σ

[
MT

1

MT
2

]
S−1E [M1,M2]

)
η̂i(t)

(21)
Let M1 = −R−1E ,M2 = Ω−1E , it can be obtained that

V̇E(t) ≤
M∑
i=2

η̂Ti (t)Ziη̂i(t) (22)

where

Zi = Ti + σ$T
i S
−1
E $i + σ

[
−R−TE
Ω−TE

]
S−1E

[
−R−1E ,Ω−1E

]
,

Ti =

[
Ti11 Ω−1E +R−1E − λiσ(t)R

−1
E BK3

∗ −(3− δ)Ω−1E

]
,

Ti11 = −2R−1E +R−1E Ã+ ÃTR−1E + Ω−1E .

Based Schur complement lemma [19], it can be concluded
that Zi < 0 is equivalent to Ψi < 0

Ψi =

 Ti σ$T
i σ

[
−R−1E −Ω−1E

]
∗ σS−1E 0
∗ ∗ −σS−1E

 < 0

Let Γ=

[
RE 0
ΩE ΩE

]
, and Γ̄=diag {T, I, S}, one gets

Γ̄TψiΓ̄=

 ΓTTΓi σΓT$T
i σ

[
0 SE

]
∗ σSE 0
∗ ∗ −σSE


According to Schur complement lemma [19],∏
(λ̄Ei ) < 0 are equivalent to

∏
(λiσ(t)) <

0 (i = 2, 3, · · · ,M, σ(t) = 1, 2, · · · , p), from (18) to
(22), one has lim

t→∞
ϕ (t) = 0.

If (16) holds, it can get that,(
LEσ(t) ⊗ (A+BK1)

)
hE (t)−

(
LEσ(t) ⊗ In

)
ḣE (t) ≡ 0

(23)
Substituting LEσ(t) = Udiag(0, ŨTLEσ(t)Ũ)UT into (23) and
then pre-multiplying the left and right of (23) by UT ⊗ In,
it has((

ŨTLEσ(t)Ũ
)
⊗ In

) [(
UT ⊗ (A+BK1)

)
hE (t)

−
(
UT ⊗ In

)
ḣE (t)

]
≡ 0

(24)

Since ŨTLEσ(t)Ũ is invertible, it could pre-multiply the

both sides of (24) by
(
ŨTLEσ(t)Ũ

)−1
⊗ In, one gets

(ŨT ⊗ (A+BK1))h(t)− (ŨT ⊗ In)ḣ(t) ≡ 0 (25)

Therefore, based on Algorithm 1, The leaders in MAS (1)
achieve time-varying formation specified by hE (t).

Step 2: The followers can converge to the convex hull
spanned by the leaders.

Let ξ̃i(t) = ξ̂i(t)− z(t). It can be verified from (5) that

˙̃
ξi(t) = (IM ⊗ (A+BK3)) ξ̃i(t)−K5

[
b
σ(t)
i ξ̃i (t− τ(t))

+
M+N∑
k=M+1

ωik

(
ξ̃i (t− τ(t))− ξ̃k (t− τ(t))

)]
+LEσ(t) ⊗BK2z̃ (t− τ (t))

(26)

Let ς(t) =
[
ξ̃T1 (t), ξ̃T2 (t), · · · , ξ̃TN (t)

]T
, then (26) could

be rewritten as

ς̇(t) = (IN ⊗ Ã)ς(t)− (Hσ(t) ⊗K5)ς (t− τ(t))

+IN ⊗
(
LEσ(t) ⊗BK2z̃ (t− τ (t))

) (27)
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where Hσ(t) = Bσ(t) + LFσ(t). Bσ(t)=diag
[
b
σ(t)
1 , b

σ(t)
2

, · · · , bσ(t)N

]
.

Consider the stability of system (27). Because
lim
t→0

(
LEσ(t) ⊗BK2z̃ (t− τ (t))

)
=0, according to [16],

the stability of system (27) is equivalent to (28).

ς̇(t) = (IN ⊗ Ã)ς(t)− (Hσ(t) ⊗K5)ς (t− τ(t)) (28)

By a similar analysis as for system (17), system (27) is
asymptotically stable, which means that the state observer
can estimate the state of leaders.

Let containment error x̃i (t) = xi (t) −
M∑
j=1

ρijzj (t).

Based on the Alogrithm 1, K4=K3 − K1 and
lim
t→∞

(z̃k (t− τ (t))− z̃j (t− τ (t))) = 0, it follows
form (7) and (9) that

˙̃xi (t) = (A+BK3) x̃i (t)−BK4

M∑
j=1

ρij ξ̃i,j(t) (29)

From Algorithm 1 and (28), the gain matrix
K3 is chose to make A + BK3 Hurwitz. Since

ξ̃i(t)=
[
ξ̃Ti,1 (t) , ξ̃Ti,2 (t) , · · · , ξ̃Ti,M (t)

]T
implies lim

t→∞
ξ̃Ti,j (t)

= 0 (j = 1, 2, · · · ,M). Therefore, lim
t→∞

˙̃xi (t) = 0, which
means MAS(1) can achieve formation-containment control
under switching interaction topologies and time-varying
delays. This completes the proof.

Remark 1: In [7] and [14], formation or containment
control problem with both time-varying delays and switching
topologies are studied respectively. From Theorem 1 and
Algorithm 1, one sees that MAS can achieve formation-
containment with both time delays and switching interaction
topologies, which means the proposed approach in this paper
is more versatile.

IV. NUMERICAL SIMULATIONS

In this section, a numerical simulation is given to demon-
strate the effectiveness of theoretical results obtained by the
previous section.

Consider a third-order MAS with four leaders and three
followers, where the dynamics of each agent is presented by
(1) with

A=

 −3 1 −3
0 0 1
−2 −4 −6

 , B =

 0
0
1


Suppose that τ (t) = 0.05 + 0.01 cos (t), Fig.1 shows

the interaction topologies with 0-1 weight. Suppose that
interaction topologies are randomly chosen form Fig. 1 with
interval Td = 10s.

The time-varying formation is specified as follows:

hi (t) =


15 sin

(
t+ (i−1)π

2

)
15 cos

(
t+ (i−1)π

2

)
−15 sin

(
t+ (i−1)π

2

)
 (i = 1, 2, 3, 4)

(a) G1 (b) G2

Fig. 1: Switching topologies

From hi (t) (i = 1, 2, 3, 4), it can be obtained that if the
formation is achieved, the four leaders will locate at the four
vertices of a square respectively, and keep rotation with an
angular velocity of 1rad/s.

According to Algorithm 1, K1 can be chosen as[
−3 3 1

]
and the eigenvalues of A+BK1 are be

specified at −8, j and −j. Choose K3 =
[

2 2 3
]

to place the eigenvalues of A+BK3 at −1, −2 and −3.
K4=

[
5 −1 2

]
, using Step 2 and Step 5 in Algorithm

1, K2 and K5 can be given as follow:

K2=
[
−0.6995 0.2506 0.2901

]
K5=I4 ⊗

 0.1099 0.0819 −0.3413
0.0756 0.4368 0.0607
−0.3723 0.0165 −0.1862


The initial state vectors of four leaders

and followers are described by zij (0) =
3 (Θ− 0.5) (i = 1, 2, 3, 4; j = 1, 2, 3) ; xij (0) =
3 (Θ− 0.5) (i = 5, 6, 7; j = 1, 2, 3), where Θ is a
pseudorandom value with a uniform distribution on the
interval (0, 1).

The desired state containment for third-order MAS is
specified by ρ51 = 1

6 , ρ52 = 1
3 , ρ53 = 1

4 , ρ54 = 1
4 , ρ61 = 1

3 ,
ρ62 = 1

3 , ρ63 = 1
4 , ρ64 = 1

12 , ρ71 = 1
2 , ρ62 = 1

6 , ρ63 = 1
6 ,

ρ64 = 1
6 .
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Fig. 2: Snapshots of seven agents (t = 36s; t = 48s)

Fig. 2 shows the state snapshots of seven agents, where the
state of leaders and followers are denoted by different colors.
The black pentagram denotes the state of the formation
reference. Fig. 3(a) denotes all the followers can acquire the
leaders’ state. Fig. 3(b) displays the time-varying formation
error and containment error within t = 50s. Form Fig. 2-3,
one sees that MAS with time-varying delays and switch-
ing interaction topologies achieves the desired formation-
containment.
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Fig. 3: Curves of formation-containment control errors

V. CONCLUSIONS

Formation-containment control problems for general linear
MASs with time-varying delays and switching interaction
topologies were studied. Based on consensus approaches,
a formation-containment protocol was proposed. Then, an
Algorithm was presented to obtain the constant matrices in
the protocol. Using LMI technique and Lyapunov-krasovskii
stability theory, the stability could be proved. Simulation
results showed that the practical results were effective for
formation-containment problems with both time-varying de-
lays and switching interaction topologies.
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