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Abstract: Group formation-tracking problem for heterogeneous multi-agent systems (HMASs) with both switching networks
and communication delays is investigated in this paper. In order to achieve different tasks, the agents are classified into various
groups. The followers are allowed to realize the formation and track the trajectory of the leader in each group. Firstly, by utilizing
the consensus control, an observer is proposed to estimate the state of the leader. Then, an observer-based control protocol is put
forward to solve the group formation-tracking problem with both communication delays and switching networks. Moreover, an
algorithm to determine the gain feedbacks is demonstrated, in the meantime, the observer’s error systems as well as the group
formation-tracking error systems are proved to be convergent. Finally, an example in the simulation prat is presented to verify
the theoretical results.
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1 Introduction

Recently, due to its low computing consumption and high
robustness, consensus control has been applied in many
fields, for example, unmanned aerial vehicles (UAVs) [1–3],
Space vehicles [4–7], etc.

As an important aera in the coordinated control, formation
control whose goal is to drive the disorganized agents form
the expected formation has aroused considerable interests.
As a pioneering work in formation problems, Ren in [8] first-
ly used consensus strategy for second-order systems to real-
ize the desired formation. Inspired by this intelligent work,
Dong in [9] put forward the formation feasibility condition
which means not all formation can be achieved, and the theo-
retical results are applied into the UAVs to verify the results.
However, due to the congestion of the interaction channel
and complex communication environment, varying commu-
nication delays along with switching networks emerge. Xiao
in [10] proposed a strategy to solve the generic MASs with
both varying delays and switching networks showing that
the control protocol can be used in a more practical com-
plex environment. Moreover, in many practical tasks such
as coordinated patrolling, etc. The agents are not only al-
lowed to achieve the expected formation but also to track
the desired trajectory. Therefore, formation-tracking prob-
lem comes into the stage. Considering the switching topolo-
gies, a consensus-based control protocol was put forward in
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the work of Yu et.al [11], and switching time has been given
according to the dwelling time. Linear matrices inequali-
ty (LMI) along with the consensus protocol is presented to
solve the MAS with varying time delays in the work of [12].
It should be mentioned that the aforementioned research on-
ly focuses on the single group. In many complicated tasks,
the agents should be divided into several groups to realize
different missions. Based on the assumption of acyclic par-
tition of the nodes, group formation problems were solved
in the work of Qin et al. [13]. Considering the switch-
ing topologies, a group formation-tracking protocol and the
algorithm to determine the gain matrices were put forward
in the work of [14]. Han in [15] investigated the group
formation-tracking problem for second order systems with
time-varying communication delays.

For the works mentioned above, only homogeneous sys-
tems were taken into consideration, which means the agents
in the systems are all identical. In order to deal with the
HMASs with switching interaction topologies, an unique
formation tracking protocol was proposed in [16]. To in-
corporate continuous repulsive vector into agents’ veloci-
ty, HMASs with varying communication delay to realize
formation-tracking was investigated in [17]. As can be seen
from the literatures mentioned above, these works consid-
ered the varying delays or switching networks, respectively,
but none of them study the output group formation-tracking
systems with both varying-time delays and switching net-
works. Designing a group formation-tracking protocol for
HMASs with both communication delays and switching in-
teraction topologies is challenging and still open.

Motivated by the above studies, this paper investigates the
output group formation-tracking for HMASs with both vary-
ing time delays and switching networks. Compared with the
aforementioned researches, the contributions are shown as
follows:
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1) As a combination of the output group control and het-
erogenous systems, the output group formation tracking
systems for HMASs are much more realistic. On the
one hand, compared with the work in [13–15], different
orders are taken into consideration. On the other hand,
compared with the work in [10], the robots in this paper
can be divided into several groups to execute different
missions.

2) Both varying time-delays and switching networks are
taken into consideration in this paper, which mean-
s compared with the control methods proposed in the
works [16, 17], the control protocol are much more ver-
satile and can be used to deal with a more complex com-
munication environment.

The organization of the rest paper is given as follows. Sec-
tion 2 demonstrates some basic concepts on graph theory
and some significant definitions are also proposed. In sec-
tion 3, a state observer and group formation-tracking proto-
col are put forward for HMAS with communication delays
and switching networks. Moreover, an algorithm is also p-
resented. Section 4 shows a numerical simulation for the
mentioned method. Section 5 concludes the whole works.

Throughout this paper, let ⊗ denote the Kronecker prod-
uct of two matrices. I represents an identify matrix with
appropriate size. Let 1 and 0n be a column vectors with 1
and n as its element.

2 Preliminaries and problem description

In this section, some basic concepts and notations on
graph theory and the problem descriptions are demonstrat-
ed.

2.1 Preliminaries
A weighted undirected graph G can be represented by

{V, T,W}, where V = {v1, v2, · · · vN} is a set of n-
odes, T ⊆ {(vi, vj) : vi, vj ∈ V } is the set of edges,
and W = [aij ] ∈ RN×N is a weighted adjacency ma-
trix. Let eij= (vi, vj) denote the edge of G and wij de-
note the nonnegative element with eji. Define wij > 0
if and only if eji ∈ T and wij = 0 otherwise. Ni =
{vj ∈ V : (vj , vi) ∈ T} is the set of neighbors of node vi.
The Laplacian matrix L is defined as L = D −W , where
D = diag

{∑N
j=1 w1j ,

∑N
j=1 w2j , · · · ,

∑N
j=1 wNj

}
. A

path from node vi1 to vik is a series of ordered edges
(vi1, vi2), (vi2, vi3), · · · , (vik−1, vik). The definition of
undirected graph is that vij ∈ T implies vji ∈ T and
wij = wji. The undirected graph is said to be connected
if there is a path between any distinct pair of nodes.

It is assumed that the interaction topologies are switching.
Let [ tk, tk+1) (k ∈ N) denote an infinite sequence of uni-
formly bounded non-overlapping time intervals with t0 = 0,
tk − tk+1 > Td > 0. Td is said as the dwell time, during
which the graph keeps fixed. The graph changes at switching
sequence tk+1. Let σ(t) : [0,∞)→ {1, 2, · · · , h} denote a
switching signal. Gσ(t) and Lσ(t) represent the graph and
Laplacian matrix at t.

Definition 1. An agent is called a leader if its neighbor set
has no agent, otherwise it is called a follower if it has at least
one neighbor.

Lemma 1. [8] If G is connected, then L has a simple 0
eigenvalue with 1N

/√
N as its right eigenvector, and all

the other eigenvalues are positive.

2.2 Problem description
Consider a heterogeneous MAS with M leaders and N

followers and the system is divided into several groups. The
target of the group formation-tracking is that the followers
should form the desired sub-formation and track the trajec-
tory of each group leader in the meanwhile.

Assume that there exist g ∈ N (g > 1) subgroup-
s and the separation of the nodes for the follower-
s is defined as V1, V2, · · · , Vg , which satisfies Vk 6=
∅ (k = 1, 2, · · · , g), ∪gk=1Vk = VF and Vk ∩ Vm = ∅
(k,m ∈ {1, 2, · · · , g} ; k 6= m). Let ī as the index of the
subgroup to which agent i belong. The number of the fol-
lowers in subgroup ī (̄i ∈ 1, 2, · · · , g) is denoted by nīF .
Assume that there is only one leader in each subgroup.

Therefore,
g∑̄
i=1

nīF = N and g = M . Let Vī =

{Ξī + 1,Ξī + 2, · · · ,Ξī + nī}, where Ξī =
ī−1∑
k=1

nk denotes

the index of subgroup ī.
The leader of subgroup ī (̄i = {1, 2, · · · , g}) is defined as{

ż ī0 (t) = Sz ī0 (t)

yī0 (t) = Uz ī0 (t)
(1)

where z ī0 (t) ∈ Rq and yī0 (t) ∈ Rp are the state and the
output of leader in subgroup ī, S ∈ Rq×q and U ∈ Rp×q are
constant gain matrices. The pair (U, S) is detectable.

The follower of i (i ∈ {Ξī + 1,Ξī + 2, · · · ,Ξī + nī}) in
subgroup ī (̄i = {1, 2, · · · , g}) can be modeled by{

ẋīi (t) = Aix
ī
i (t) +Biu

ī
i (t)

yīi (t) = Cix
ī
i (t)

(2)

where xīi (t) ∈ Rni , uīi (t) ∈ Rmi and yīi (t) ∈ Rp are the s-
tate, control input and output of the follower i. Ai ∈ Rni×ni ,
Bi ∈ Rni×mi and Ci ∈ Rp×ni are constant gain known ma-
trices with rank(Bi) = mi. The system matrixes (Ai, Bi)
and (Ci, Ai) are stabilizable and observable, respectively.

Assumption 1. The following regulator equations:{
EiS = AiEi +BiFi
0 = CiEi − U

(3)

have solution matrices (Ei, Fi), i = 1, 2, · · · , N .

Remark 1. Note that Assumption 1 is standard for coopera-
tive control of HMAS. The solvability of regulator equations
is important for the output regulation problems.

The Laplacian matrix Lσ(t) of the heterogeneous group
MASs is shown as follows:[

0M×M 0M×N
LEFσ(t) LFσ(t)

]
Let LEF

σ(t)̄i
represent the communication between the lead-

er and the followers of the subgroup ī, and LF
σ(t)̄ij̄

repre-
sent the followers interaction from subgroup ī to subgroup j̄
(̄i, j̄ ∈ {1, 2, · · · , g}).
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Assumption 2. For each subgroup ī (̄i ∈ 1, 2, · · · , g), the
corresponding topology Ḡσ(t)̄i of the followers is undirected
and connected.

Assumption 3. For any communication topologies, the sum
of each row of LF

σ(t)̄ij̄
, ī, j̄ ∈ {1, 2, · · · , g} is equal to zero.

And the eigenvalues of the LFσ(t) ∈ RN×N are different.

Let hī0 (t) =
[
hTΞī+1 (t) , hTΞī+2 (t) , · · · , hT

Ξī+n
ī
F

(t)
]T
∈

Rnni represent the expected formation of subgroup ī
(̄i ∈ {1, 2, · · · , g}), where each component of hTΞī+j (t)
(j ∈ {Ξī + 1,Ξī + 2, · · · ,Ξī + nī}) is piecewise continu-
ously differentiable. Denote yī (t) =

[
yīT

Ξī+1
(t) , yīTΞī+2 (t)

, · · · , yīT
Ξī+n

ī
F

(t)
]T
∈ Rnnī for the followers of subgroup ī

ī ∈ {1, 2, · · · , g}.

Definition 2. If for any given bounded initial values, the
HMAS is said to achieve the output group formation tracking
for any subgroup ī (̄i ∈ {1, 2, · · · , g})

lim
t→0

(
yī (t)− hī0 (t)−

(
1ni ⊗ yī0 (t)

))
= 0 (4)

The rest of this paper will concentrate on
1) Under what condition the HMASs can realize the de-

sired group formation tracking.
2) How to design the state observer and the output group

formation tracking protocol under the influence of time-
varying delays and switching interaction topologies.

3 Main results

In this section, state observer for each follower to esti-
mate the group leader is introduced under the influence of
both time-varying communication delays and switching in-
teraction topologies. Then, the effectiveness of the proposed
observer is to be proved. Furthermore, an observer-based
group formation protocol is proposed and an algorithm to
determine the constant matrix in the protocol is also put for-
ward.

Consider the following state observer for each follower:

˙̂
ζ īi (t) = Sζ̂ īi (t)−K1

 c=ī∑
j∈NFi

σ(t)

wij

(
ζ̂ īi (t− τ (t))

−ζ̂cj (t− τ (t))
)
+

c6=ī∑
j∈NFi

σ(t)

wij

(
ζ̂ īi (t− τ (t))− ζ̂cj (t− τ (t))

)
−

∑
k∈NEi

σ(t)

wik

(
ζ̂ īi (t− τ (t))− z ī0 (t− τ (t))

)
(5)

where ζ̂ īi (t) is the i-th follower’s observer belonging to the
subgroup ī (̄i ∈ {1, 2, · · · , g}), and z ī0 (t) is the leader of
subgroup ī. τ (t) represents the varying delays. K1 is the
constant gain matrix to be calculated later.

Assumption 4. Varying communication delays τ (t) satis-
fies 0 6 τ(t) 6 σ and |τ̇(t)| 6 δ < 1. σ and δ are known
constants, which means τ (t) is bounded.

The following lemmas are presented to prove the effec-
tiveness of the proposed observer.

Lemma 2. [18] A vector-valued function is denoted by
η (t) ∈ R2d, whose entries are first-order continuous-
derivative. One gets

−
∫ t

t−τ(t)

η̇T (s)P η̇ (s)ds

6 γT (t)

[
XT

1 +X1

∗
−XT

1 + X2

−XT
2 −X1

]
γ (t)

+ τ (t) γT (t)

[
XT

1

XT
2

]
P−1 [X1, X2] γ (t)

(6)

where X1, X2 ∈ R2d, γ (t) =
[
ηT (t) , ηT (t− τ (t))

]T
and P is a positive definite symmetric matrix.

Let λ̄1 = min
{
λiσ(t)

}
, λ̄2 = max

{
λiσ(t)

}
, σ(t) ∈

{1, 2, · · · , p}, λiσ(t) is the eigenvalue of real symmetric pos-
itive definite matrix.

Lemma 3. [10] For any i, the switching signal σ(t) ∈
{1, 2, · · · , p}, Θi

σ(t) = Φ0 + λiσ(t)Φ1 < 0 if and only if
Θi = Φ0 + λ̄iΦ1 < 0 (i ∈ {1, 2}).

Lemma 4. [14] Let ζ̂ ī (t) =
[
ζ̂ īTΞī+1 (t) , ζ̂ īTΞī+2 (t), · · · ,

ζ̂ īT
Ξī+n

ī
F

(t)
]T
∈ RqnīF , and if the state observer satisfies the

following equation

lim
t→0

(
ζ̂ ī (t)− (1niF ⊗ In) z ī0 (t)

)
= 0 (7)

then the observer is said to estimate the leader’s state for the
subgroup ī.

The constant matrix in state observer K1 is designed as
the following LMI.

If there exist positive symmetric matrices R, Ω, X and
real matrix K̄1, LMI (8) is feasible for any λ̄Fi (i = 1, 2)

∏
(λ̄i) =


Ξ11 Ξ12 Ξ13 0 R
∗ Ξ22 Ξ23 σX 0
∗ ∗ −σX 0 0
∗ ∗ ∗ −σX 0
∗ ∗ ∗ ∗ −Ω

 < 0 (8)

where
Ξ11 = RST + SR− λ̄Fi K̄1 − λ̄Fi K̄T

1 − (1− δ)Ω
Ξ12 = R− λ̄Fi K̄1 − (2− δ)Ω
Ξ13 = σRST − σλ̄Fi K̄T

1

Ξ22 = −(3− δ)Ω
Ξ23 = −σλ̄Fi K̄T

1

λ̄Fi (i = 1, 2) are the minimum and maximum eigenvalues
of the followers Laplacian matrix LFσ(t).

Then the gain matric can be defined as K1 = K̄1Ω−1.
Based on the calculated K1, the following Theorem can

be derived.

Theorem 1. The proposed state observer can estimate the
leader state for each subgroup under the influence of both
time-varying communication delays and switching interac-
tion topologies.
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Proof. Let ζ̃ ī (t) = ζ̂ ī (t) −
(

1nīF
⊗ Iq

)
z ī0 (t) and ζ̃ ī (t) =[

ζ̃1T (t) , ζ̃2T (t) , · · · , ζ̂gT (t)
]T
∈ RNq . Then, one gets

˙̃
ζ (t) = (IN ⊗ S) ζ̃ (t)−

(
LFσ(t) ⊗K1

)
ζ̃ (t− τ (t)) (9)

Considering the following common Lyapunov-Krasovskii
candidate function:

V (t) = V1 (t) + V2 (t) + V3 (t) (10)

where
V1 (t) = ζ̃T (t)

(
IN ⊗R−1

)
ζ̃ (t),

V2 (t) =
∫ t
t−τ(t)

ζ̃T (s)
(
IN ⊗ Ω−1

)
ζ̃ (s) ds,

V3 (t) =
∫ 0

−σ
∫ t
t+µ

˙̃
ζ
T

(s)
(
IN ⊗X−1

) ˙̃
ζ (s)dsdµ.

Based on the Assumption 3, Let ΛFσ(t) =

diag
(
λ1
σ(t), λ

2
σ(t), · · · , λ

N
σ(t)

)
, then there exist-

s an orthogonal matrix Mσ(t) ∈ RN×N satisfying
MT
σ(t)L

F
σ(t)Mσ(t) = ΛFσ(t).

Define η (t) =
(
MT
σ(t) ⊗ INn

)
ζ̃ (t) =

[
ηT1 (t) , ηT2 (t) ,

, · · · , ηTN (t)
]T

, take the derivative of V (t) along the (10)

V̇1 (t) =
N∑
i=1

η̂Ti (t)

[
R−1S + STR−1 −λiσ(t)R

−1BK1

∗ 0

]
η̂i (t)

(11)
where η̂i (t) =

[
ηTi (t) , ηTi (t− τ (t))

]T
.

Based on Assumption 3, V̇2(t) can be written as

V̇2(t) ≤ ηT (t)
(
IN ⊗ Ω−1

)
η (t)

− (1− δ) ηT (t− τ (t))
(
IN ⊗ Ω−1

)
η (t− τ (t))

=
N∑
i=1

η̂Ti (t)

[
Ω−1 0

0 − (1− δ) Ω−1

]
η̂i(t)

(12)

V̇3 (t) = ση̇T (t)
(
IN ⊗X−1

)
η̇ (t)

−
∫ t
t−σ η̇

T (s)
(
IN ⊗X−1

)
η̇ (s) ds

(13)

Let $i =
[
S , − λiσ(t)BK1

]
, the first half of the equation

(25) is given as

ση̇T (t)
(
IN ⊗X−1

)
η̇ (t) = σ

N∑
i=1

η̂Ti (t)$T
i X
−1$iη̂i (t)

(14)
From Assumption 4 and Lemma 2, the latter part is given

as

−
∫ t
t−σ η̇

T (s)
(
IN ⊗X−1

)
η̇ (s) ds

≤
N∑
i=1

η̂Ti (t)

([
MT

1 +M1 −MT
1 +M2

∗ −MT
2 −M2

]
+σ

[
MT

1

MT
2

]
X−1 [M1,M2]

)
η̂i (t)

(15)

Define M1 = −R−1,M2 = Ω−1, form (10) to (15), ones
get

V̇ (t) 6
N∑
i=1

η̂Ti (t)Ziη̂i(t) (16)

where

Zi = Ti + σ$T
i X
−1$i + σ

[
−R−T

Ω−T

]
X−1

[
−R−1,Ω−1

]
,

Ti =

[
Ti11 Ω−1 +R−1 − λiσ(t)R

−1BK1

∗ −(3− δ) Ω−1

]
,

Ti11 = −2R−1 +R−1S + STR−1 + Ω−1.

It can be verified by Schur complement lemma, Zi < 0 is
equivalent to Ψi < 0

Ψi =

 Ti σ$T
i σ

[
−R−1 −Ω−1

]
∗ σS−1 0
∗ ∗ −σS−1

 < 0

Choosing Γ =
[
R 0
Ω Ω

]
and Γ̄ = diag {T, I,X}, then

one gets

Γ̄TψiΓ̄ =

 ΓTTΓi σΓT$T
i σ

[
0 X

]
∗ σX 0
∗ ∗ −σX


Based on the calculated K1 = K̄1Ω−1 and Lem-

ma 2,
∏(

λ̄i
)
< 0 are equivalent to

∏(
λiσ(t)

)
< 0

(i = 2, 3, · · · , N, σ(t) = 1, 2, · · · , p). Then according to
Schur complement lemma,

∏(
λiσ(t)

)
< 0 if and only if

Γ̄TψiΓ̄ < 0. One gets

lim
t→∞

ζ̃ (t) = 0 (17)

Therefore observer’s error ζ̃ (t) converges to zero as t →
∞ with both communication delays and switching interac-
tion topologies. This completes the proof.

Consider the following observer-based group
formation-tracking protocol for follower i (i ∈ {Ξī + 1,
Ξī + 2, · · · ,Ξī + nī}) in subgroup ī (̄i = {1, 2, · · · , g})

uīi (t) = K2ix
ī
i (t) +K3i

(
ζ̂ īi (t) + hīi (t)

)
+ rīi (t) (18)

where K2i and K3i are the constant matrices, rīi (t) ∈ Rmi
is the compensation input for the group formation tracking.

Note that rank(Bi) = mi, there exists a nonsingular

matrix Γi =
[
B̂Ti , B̃

T
i

]T
with B̂i ∈ R(ni−mi)×ni and

B̃i ∈ R(ni−mi)×ni .
Algorithm 1: Steps of designing the gain matrices.
Step 1: Solve the regulator for the pair (Ei, Fi).
Step 2: For the given formation, check the following fea-

sibility condition

lim
t→∞

(
B̃iEi

(
Shīi (t)− ḣīi (t)

))
= 0 (19)

Step 3: Calculate the compensation input rīi (t) as follows

rīi (t) = −B̂iEi
(
Shīi (t)− ḣīi (t)

)
(20)

Step 4: The gain metric K1 in the distributed observer (4)
can be given by LMI.

Step 5: Chose appropriate K2i such that Ai + BiK2i is
Hurwitz, and K3i = Fi −K2iEi.
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Theorem 2. If there exist formations satisfying (19), HMAS
is said to achieve the group formation tracking with time-
varying delays and switching interaction topologies under
the protocol designed by Algorithm 1.

Proof. Based on protocol (18), the followers’ systems can
be written as

ẋīi (t) = (Ai+BiK2i)x
ī
i (t) +BiK3i

(
ζ̂ īi (t) + hīi (t)

)
+Brīi (t)

(21)
The group formation-tracking error of follower i in sub-

group ī denotes by φīi (t) = xīi (t)− hīi (t)− ζ īi (t).
From Algorithm 1, one gets

φ̇īi (t) = (Ai + BiK2i)φ
ī
i (t) +BiK3iζ̃

ī
i (t)

+SEih
ī
i (t)− Eiḣīi (t) +Bir

ī
i (t)

(22)

Because the formation feasibility conditions are satisfied,
one has

lim
t→∞

(
B̃iEi

(
Shīi (t)− ḣīi (t)

)
+B̃iBir

ī
i (t)

)
= 0 (23)

Based on (20), it can be obtained that

B̂iEi

(
Shīi (t)− ḣīi (t)

)
+B̂iBir

ī
i (t) = 0 (24)

Note that Γi =
[
B̂Ti , B̃

T
i

]T
is nonsingular. It can be veri-

fied from (23) and (24) that

lim
t→∞

(
SEih

ī
i (t)− Eiḣīi (t) +Bir

ī
i (t)

)
= 0 (25)

Note that based on Theorem 1 lim
t→0

(
ζ īi (t)

)
= 0 and

Ai + BiK2i is Hurwitz, thus lim
t→0

(
φīi (t)

)
= 0, which means

that HMASs can realize the group formation tracking under
the influence of both time delays and switching topologies.
This completes the proof of Theorem 2.

Remark 2. According to Theorem 2, only the formation
satisfying the formation feasibility condition can be real-
ized. And based on the protocol, the group formation track-
ing problem in a more complex environment is proven to be
achieved.

4 Numerical simulations

In this section, an illustrative simulation is shown to verify
the effectiveness of the proposed protocol and algorithm.

Consider a HMAS with nine agents and divided into two
subgroups. Let V1 = {1, 2, 3} and V2 = {4, 5, 6, 7} denote
the followers of each subgroup. The number of the followers
in each group are defined as n1

F = 3, n2
F = 4. Let τ (t) =

0.06 + 0.02sin (t). The switching interaction topologies are
shown in the Fig. 1.

The dynamic of each leader is shown as:

S=

 0 −1 0
1 0 0
0 0 −1

, U=

 0 1 0
1 0 0
0 0 1

.

The dynamics of the followers are presented with:

1

-1

(a) G1

1

-1

(b) G2

Fig. 1: Switching topologies

Ai=

 0 1 0
0 0 1
2 −2 −1

, Bi=

 0 0
1 0
0 1

, Ci=

 1 0 0
0 1 0
0 0 1

,

Ei =

 0 1 0
1 0 0
0 0 1

, Fi =

[
0 −1 −1
2 −2 0

]
. (i = 1, 2, 3)

Aj =

 0 1 0
0 0 1
−1 −2 −1

, Bj =

 0 0
0 1
1 0

,

Cj =

 1 0 0
0 1 0
0 0 1

, Ej =

 0 1 0
1 0 0
0 0 1

, Fj =[
2 1 0
0 −1 −1

]
. (j = 4, 5, 6, 7)

The desired formations for each group are shown as fol-
low

hīi (t) =


rī sin

(
t+

(nīF−1)2π

nīF

)
−rī cos

(
t+

(nīF−1)2π

nīF

)
rī cos

(
t+

(nīF−1)2π

nīF

)


where ī = {1, 2}, r1 = 15m and r2 = 5m. It can be ob-
tained that the formation tracking feasibility conditions are
satisfied. The formation compensation inputs are given as
rīi (t) = 0.

The gain matrixes are given as follows:

K1 =

 0.4880 -0.0148 0
0.0148 0.4880 0

0 −0 -0.0696

, K2i =[
−6 −5 −1
−2 2 0

]
, K3i =

[
5 5 0
0 0 0

]
, K2j =[

1 2 −1
−12 −7 −1

]
, K3j =

[
0 0 1
7 11 0

]
.

(i = 1, 2, 3; j = 4, 5, 6, 7)
The initial states of the leaders and followers are chosen

as xīi (0) = 2 (Θ− 0.5) (i = {1, 2, · · · , 7} ; ī = {1, 2}) and
z ī0 (0) = 2 (Θ− 0.5) (̄i = {1, 2}), where Θ is a pseudo-
random value that satisfies the uniform distribution between
(0, 1). The initial value of the observes are zero.
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(a) t = 0s
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(b) t = 47s

Fig. 2: Snapshots of seven agents (t = 0s; t = 47s)
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Fig. 3: State observers’ error within t = 50s

0 10 20 30 40 50

0

100

200

300

400

500

600

700

800

900

Fig. 4: Group formation tracking error within t = 50s

Fig. 2 shows the state snapshots of nine agents with
t = 0s and 47s, respectively. Each group formation is denot-
ed by different color. Fig. 3 denotes that the state observers’
error can converge to zero within t = 50s. In Fig. 4, group
formation tracking error is also convergent, therefore, the H-
MASs can achieve the group formation-tracking.

5 Conclusions

Time-varying group formation tracking problems for H-
MASs under the influence of both communication delays
and switching topologies are investigated in this paper. To
solve the multiple communication constraints, a distributed
observer is proposed to evaluate the state of leader. Then,
an observer-based protocol is given for each follower. More-
over, the convergence of the group-formation tracking is al-
so presented, which means that the HMASs can realize the
group-formation tracking with both varying time-delays and
switching network. Future research will concentrate on the
group formation-tracking control problem for HMASs with-
out well-informed follower

Acknowledgements

This work was supported by the Science and Technolo-
gy Innovation 2030-Key Project of ”New Generation Artifi-
cial Intelligence” under Grant 2020AAA0108200, the Na-
tional Natural Science Foundation of China under Grants
61873011, 61973013, 61922008 and 61803014, the Defense
Industrial Technology Development Program under Grant
JCKY2019601C106, the Innovation Zone Project under
Grant 18-163-00-TS-001-001-34, the Foundation Strength-
ening Program Technology Field Fund under Grant 2019-
JCJQ-JJ-243, and the Fund from Key Laboratory of Depend-
able Service Computing in Cyber Physical Society under
Grant CPSDSC202001.

References
[1] S. Rao and D. Ghose, Sliding mode control-based autopilot-

s for leaderless consensus of unmanned aerial vehicles, IEEE

Transactions on Control Systems Technology 22(5) (2013)
1964-1972.

[2] X. Dong, B. Yu, Z. Shi and Y. Zhong, Time-varying forma-
tion control for unmanned aerial vehicles: Theories and ap-
plications, IEEE Transactions on Control Systems Technology
23(1) (2014) 340-348.

[3] L. Hu, X. Sun and L. He, Formation Tracking for nonlin-
ear multi-agent systems with input and output quantization via
adaptive output feedback control, Journal of Systems Science
and Complexity 33(2) (2020) 401-425.

[4] R. W. Beard, J. Lawton and F. Y. Hadaegh, A coordination ar-
chitecture for spacecraft formation control, IEEE Transactions
on Control Systems Technology 9(6) (2001) 777-790

[5] W. Ren, Formation keeping and attitude alignment for multi-
ple spacecraft through local interactions, Journal of Guidance
Control and Dynamics 30(2) (2007) 633-638.

[6] H. Wong, V. Kapila and AG. Sparks, Adaptive output feedback
tracking control of spacecraft formation. International Journal
of Robust and Nonlinear Control 12(2-3) (2002) 117-139.

[7] J. Yu, X. Dong, Q. Li and Z. Ren, Cooperative guidance strat-
egy for multiple hypersonic gliding vehicles system, Chinese
Journal of Aeronautics 33(3) (2020) 990-1005.

[8] W. Ren, Consensus based formation control strategies for
multi-vehicle systems, IEEE American Control Conference
(2006) 6.

[9] X. Dong, B. Yu, Z. Shi, Y. Zhong, Time-varying formation con-
trol for unmanned aerial vehicles: Theories and application-
s. IEEE Transactions on Control Systems Technology, 23(1)
(2014) 340-348.

[10] W. Xiao, J. Yu, R. Wang, X. Dong, Q. Li and Z. Ren, Time-
varying formation control for time-delayed multi-agent sys-
tems with general linear dynamics and switching topologies,
Unmanned Systems 7(1) (2019) 3-13.

[11] J. Yu, X. Dong, Q. Li and Z. Ren, Time-varying forma-
tion tracking for high-order multi-agent systems with switch-
ing topologies and a leader of bounded unknown input, Journal
of the Franklin Institute 355(5) (2018) 2808-2825.

[12] L. Han, X. Dong and Q. Li, Formation tracking control for
time-delayed multi-agent systems with second-order dynamic-
s, Chinese Journal of Aeronautics, 30(1) (2017) 348-357.

[13] J. Qin, C. Yu and H. Gao, Collective behavior for group of
generic linear agents interacting under arbitrary network topol-
ogy, IEEE Transactions on Control of Network Systems 2(3)
(2015) 288-297.

[14] Y. Li, X. Dong, Q. Li and Z. Ren, Time-varying group for-
mation tracking for second-order multi-agent systems with
switching directed topologies, Guidance, Navigation and Con-
trol Conference (2018) 1-7.

[15] L. Han, Y. Xie, X. Li, X. Dong, Q. Li and Z. Ren, Time-
varying group formation tracking control for second-order
multi-agent systems with communication delays and multiple
leaders, Journal of the Franklin Institute 357(14) (2020) 9761-
9780.

[16] Y. Hua, X. Dong, J. Wang, Q. Li and Z. Ren, Time-varying
output formation tracking of heterogeneous linear multi-agent
systems with multiple leaders and switching topologies, Jour-
nal of the Franklin Institute 356(1) (2019) 539-560.

[17] Y. Guo, J. Zhou, G. Li and J. Zhang, Robust formation track-
ing and collision avoidance for uncertain nonlinear multi-agent
systems subjected to heterogeneous communication delays,
Neurocomputing 395 (2020) 107-116.

[18] X. Zhang, M. Wu, J. She and Y. He, Delay-dependent sta-
bilization of linear systems with time-varying state and input
delays, Automatica, 41(8) (2005) 1405-1412.

199
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on July 15,2024 at 06:28:56 UTC from IEEE Xplore.  Restrictions apply. 


		2022-08-24T14:05:18-0400
	Preflight Ticket Signature




