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 A B S T R A C T

This article investigates the time-varying output group formation tracking control (GFTC) problem for 
heterogeneous multi-agent systems (HMASs) under switching topologies. The objective is to design a distributed 
control strategy that enables the outputs of the followers to form the desired sub-formations and track the 
outputs of the leader in each subgroup. Firstly, novel distributed observers are developed to estimate the states 
of the leaders under switching topologies. Then, GFTC protocols are designed based on the proposed observers. 
It is shown that with the distributed protocol, the GFTC problem for HMASs under switching topologies is 
solved if the average dwell time associated with the switching topologies is larger than a fixed threshold. 
Finally, an example is provided to illustrate the effectiveness of the proposed control strategy.
1. Introduction

Formation control of multi-agent systems (MASs) has attracted sig-
nificant attention over recent decades due to its wide range of applica-
tions, such as agricultural monitoring, delivery services, and disaster 
management [1–3]. Consensus-based formation control, as a typical 
class of consensus control, can significantly reduce communication 
costs and improve the robustness of the system [4]. Some relevant 
works on consensus-based formation control can be found in [5–7].

In practice, MASs are required to achieve the desired formation and 
simultaneously track a reference trajectory provided by an exosystem. 
For instance, in agricultural monitoring applications, leader drones 
equipped with advanced sensors will navigate over farmlands to collect 
essential data, such as crop health and soil conditions. The follower 
drones can maintain a specific shape while tracking the trajectory of the 
leaders, allowing them to cover a wider area and collect supplementary 
data. This gives rise to the so-called time-varying formation tracking 
control problem. Numerous formation tracking control problems have 
been investigated for homogeneous MASs [8–12]. However, the dynam-
ics of agents are often different in practice. These systems are referred 
to as heterogeneous multi-agent systems (HMASs). Recently, extensive 
research has been conducted on formation tracking control problems 
for HMASs [13–15].

In practical applications, it is often necessary to coordinate multiple 
groups of agents. Take, for instance, the fire rescue scenario depicted 
in Fig.  1, where the heterogeneous MASs consisting of quadrotors and 
unmanned ground vehicles are organized into several groups. Each 
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Fig. 1. The schematic diagram of fire rescue.

group forms a specific formation and is assigned to reach different 
fire locations. Consequently, group cooperative control problems of 
MASs have attracted considerable attention, including group consensus, 
group formation, and group formation tracking (see, for example, [16–
21]). The group formation control problem for MASs was investigated 
in [19], where the feasibility condition for achieving the time-varying 
formation was also presented. The group formation tracking contain-
ment control problem for MASs was investigated in [20]. In contrast to 
studies focused on homogeneous MASs [16–20], the group formation 
tracking control (GFTC) problem for HMASs was studied in [21].
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It is worth noting that the aforementioned studies [16–21] primarily 
focus on achieving cooperative control under a fixed interaction topol-
ogy. However, due to a range of factors, such as obstructions or failures 
in communication device links, switching topologies often become 
inevitable in most real-world applications. Therefore, the investigation 
of cooperative control of MASs under switching topologies has received 
considerable attention, such as consensus problems [22,23], formation 
control problems [24,25], and group coordination problems [26–28]. 
The time-varying formation tracking problem for MASs with undirected 
switching graphs was studied in [25], where all graphs were required 
to have a spanning tree. The group consensus problem for general 
linear MASs with and without switching topologies was investigated 
in [27]. In [28], the GFTC problem with switching networks was 
studied; however, it focused on homogeneous system dynamics and did 
not consider cooperation among different subgroups. To the best of our 
knowledge, the problem of GFTC for HMASs with switching topologies 
is still open, which motivates this study.

In this paper, the time-varying output GFTC problem for HMASs 
with switching topologies is investigated. To this end, we initially 
develop novel distributed observers for each follower to estimate the 
state of the leader in each subgroup under switching topologies. Subse-
quently, the GFTC protocols are proposed to ensure that the followers 
in each subgroup achieve the desired formation and track the trajectory 
provided by their respective leaders. The main contributions of this 
study are summarized as follows:

1. A novel distributed observer is first introduced by consider-
ing both inter-group and intra-group interactions, enabling the 
estimation of states for leaders under switching topologies. Sub-
sequently, an observer-based distributed controller is developed 
so that the GFTC problem can be solved. Considering that mul-
tiple groups can be seen as the extension of a single group, 
our proposed method encompasses several existing formation 
tracking control methods such as those in [13–15] as special 
instances.

2. This work considers the GFTC problem for MASs with general 
heterogeneous dynamics, which encompass first-order or second-
order dynamics studied in [26], as well as homogeneous agent 
dynamics investigated in [27,28] as special cases.

3. Different from the previous studies on group cooperative prob-
lems for MASs that do not consider switching topologies [16–
21], this research focuses on the GFTC problem for HMASs with 
switching topologies. The ability to adapt to varying interaction 
topologies enables our method to manage more complex and 
diverse networks effectively.

This paper is structured as follows: Section 2 provides some prelim-
inaries and formulates the GFTC problem. In Section 3, the distributed 
controllers and the analysis of closed-loop systems are presented. Sec-
tion 4 demonstrates the effectiveness of the proposed control strategy 
through a numerical example. Finally, Section 5 concludes this paper.

Notations. 𝟎𝑝×𝑞 and 𝟏𝑝×𝑞 represent the 𝑝 × 𝑞 matrices where all 
elements are zero and one, respectively. The 𝑛 dimensional identity 
matrix is denoted by I𝑛. ⊗ and ‖ ⋅ ‖ represent the Kronecker product 
and the Euclidean norm. The diagonal block matrix is defined as 
diag

{

𝜐1,… , 𝜐𝑖,… , 𝜐𝑘
} with 𝜐𝑖 as its diagonal entry. The functions min{⋅}

and max{⋅} determine the minimum and maximum elements of an ar-
ray, respectively. For a matrix  ∈ R𝑛×𝑛 with all the eigenvalues being 
real, 𝜆max() and 𝜆min() denote the largest and smallest eigenvalues 
of , respectively.

2. Preliminaries and problem formulation

2.1. Preliminaries

Considers a HMAS consisting of 𝑁𝑓  followers and 𝑁𝑙 leaders. An 
agent is defined as a leader if it does not have any neighboring agents; 
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conversely, it is classified as a follower if it has at least one neighboring 
agent. Define 𝑓 =

(

𝑓 , 𝑓 ,𝑓
) as a directed graph among followers, 

where 𝑓 =
{

1,… , 𝑁𝑓
} represents a set of nodes, 𝑓  denotes the set 

of edges, and 𝑓 = [𝑎𝑖𝑗 ] ∈ R𝑁𝑓×𝑁𝑓  represents the weighted adjacency 
matrix with 𝑎𝑖𝑗 > 0 if (𝑗, 𝑖) ∈ 𝑓 , and 𝑎𝑖𝑗 = 0 otherwise. The pinning 
gains from the 𝑘th leader to each follower 𝑖 are represented by 𝑎𝑖0𝑘, 
where 𝑎𝑖0𝑘 > 0 indicates the capability of information transmission from 
the leader 𝑘 to the follower 𝑖; otherwise, 𝑎𝑖0𝑘 = 0. A spanning tree is a 
directed graph where at least one root node possesses a directed path 
connecting it to all other nodes.

The HMAS is partitioned into 𝑁𝑙 subgroups denoted as 𝑘, 𝑘 =
1,… , 𝑁𝑙, each consisting of one leader and 𝑔𝑖 followers, with 

∑𝑁𝑙
𝑖=1 𝑔𝑖 =

𝑁𝑓 . Let 𝑙 = {1,… , 𝑁𝑙} denote the set of the leaders. The partition of 
𝑓  is defined as {𝑓1,𝑓2,… ,𝑓𝑁𝑙

} satisfying 𝑓𝑗 ≠ ∅
(

𝑗 = 1,… , 𝑁𝑙
)

, 
∪𝑁𝑙
𝑗=1𝑓𝑗 = 𝑓 , and 𝑓𝑗 ∩𝑓𝑠 = ∅

(

𝑗, 𝑠 ∈ {1, 2,… , 𝑁𝑙} ; 𝑗 ≠ 𝑠). It can be 
seen that 𝑘 consists of the 𝑘th leader and the subset of followers 𝑓𝑘.

Let 𝜎(𝑡) ∶ [0,+∞) → {1,… , 𝑠} be the piecewise switching signal. 
Consider an infinite sequence of uniformly bounded, non-overlapping 
time intervals [𝑡ℎ, 𝑡ℎ+1) with ℎ ∈ N and 𝑡1 = 0. Each interval satisfies 0 <
𝜏𝑑 ≤ 𝑡ℎ+1 − 𝑡ℎ, where 𝜏𝑑 is referred to as the dwell time. It is important 
to note that within this paper, the communication graph remains fixed 
during each time interval and changes only at the switching time 𝑡ℎ+1.

Definition 1 ([29]). During any time interval (𝑇𝑚, 𝑇𝑛) with 𝑇𝑛 > 𝑇𝑚 > 0, 
if the number of switches 𝑁𝜎(𝑇𝑚 ,𝑇𝑛) satisfies 𝑁𝜎(𝑇𝑚 ,𝑇𝑛) ≤ 𝑁0 + 𝑇𝑛−𝑇𝑚

𝜏𝑑
, 

where 𝑁0 and 𝜏 are positive constants, 𝜏𝑑 is defined as the average 
dwell time of the signal 𝜎(𝑡).

Let 𝜎(𝑡) be the switching digraph, and the corresponding Lapla-
cian matrix is defined as 𝜎(𝑡) =

[

𝜎(𝑡)
1 𝜎(𝑡)

2
𝟎𝑁𝑙×𝑁𝑓

𝟎𝑁𝑙×𝑁𝑙

]

, where 𝜎(𝑡)
2 =

[

−𝑎𝜎(𝑡)0𝑖𝑘

]

𝑁𝑓×𝑁𝑙
, 𝜎(𝑡)

1 =
[

𝑙𝜎(𝑡)𝑖𝑗

]

𝑁𝑓×𝑁𝑓
 with 𝑙𝜎(𝑡)𝑖𝑗 = −𝑎𝜎(𝑡)𝑖𝑗  for 𝑖 ≠ 𝑗, and 

𝑙𝑖𝑗 =
∑𝑁𝑓

𝑚=1 𝑎
𝜎(𝑡)
𝑖𝑚 +

∑𝑁𝑙
𝑘=1 𝑎

𝜎(𝑡)
𝑖0𝑘  for 𝑖 = 𝑗.

2.2. Problem formulation

The dynamics of the 𝑖th (𝑖 ∈ 𝑓
) follower is given as:

𝒙̇𝑖 (𝑡) =𝑨𝑖𝒙𝑖 (𝑡) + 𝑩𝑖𝒖𝑖 (𝑡) ,

𝒚𝑖 (𝑡) =𝑪 𝑖𝒙𝑖 (𝑡) , (1)

where 𝒙𝑖 ∈ R𝑛𝑖 , 𝒖𝑖 ∈ R𝑚𝑖 , 𝒚𝑖 ∈ R𝑝 represent the state, control input, and 
output of the 𝑖th follower, respectively, 𝑨𝑖 ∈ R𝑛𝑖×𝑛𝑖 , 𝑩𝑖 ∈ R𝑛𝑖×𝑚𝑖 , and 
𝑪 𝑖 ∈ R𝑝×𝑛𝑖  are the system matrices.

The model of the 𝑖th (𝑖 ∈ 𝑙
) leader is given as:

𝒙̇0𝑖 (𝑡) = 𝑨0𝒙0𝑖 (𝑡) ,

𝒚0𝑖(𝑡) = 𝑪0𝒙0𝑖(𝑡), (2)

where 𝒙0𝑖 ∈ R𝑛0 , and 𝒚0𝑖 ∈ R𝑝 represent the state and output of 
the leader, respectively, 𝑨0 ∈ R𝑛0×𝑛0  and 𝑪0 ∈ R𝑝×𝑛0  are the system 
matrices of the leader.

This paper investigates the GFTC problem with switching topolo-
gies. For any subgroup 𝑞 = {leader 𝑞,𝑓𝑞} (𝑞 = 1,… , 𝑁𝑙), let 
𝒉𝑥𝑖 (𝑡) ∈ R𝑛0  represent the piecewise continuous differentiable time-
varying formation vector satisfying

𝒉̇𝑥𝑖(𝑡) =𝑨𝐹𝒉𝑥𝑖,

𝒉𝑦𝑖(𝑡) =𝑪𝐹𝒉𝑥𝑖, (3)

where 𝒉𝑦𝑖 ∈ R𝑝, 𝑨𝐹  and 𝑪𝐹  are matrices of compatible dimensions. 
Then, the GFTC problem with switching topologies is formulated as 
follows. 
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Remark 1.  A variety of formation shapes can be generated by Eq. 
(3), such as time-invariant formation [30], three-dimensional formation
[25,31,32], and scaling formation [33]. Specifically, by setting 𝐴ℎ =
𝟎𝑛0×𝑛0  and 𝐶ℎ = I𝑝×𝑛0 , this equation can specify the non-rotating time-
invariant formation shape. Additionally, the three-dimensional forma-
tion shape in [25,31,32] can be generate by setting 𝐴ℎ =

(

0 1
−𝑐2 0

)

and 𝐶ℎ =
(

1 0
) along each of the 𝑋, 𝑌 , and 𝑍 axes, respectively, 

where 𝑐 represents a positive constant.

Definition 2 (GFTC Problem).  Consider HMAS consisting of (1) and 
(2) with switching topologies 𝜎(𝑡). The GFTC problem can be solved 
if there exists a distributed protocol for each follower in any subgroup 
𝑞 = {leader 𝑞,𝑓𝑞}, 𝑞 = 1,… , 𝑁𝑙, such that 

lim
𝑡→+∞

‖𝒚𝑖(𝑡) − 𝒉𝑦𝑖(𝑡) − 𝒚0𝑘(𝑡)‖ = 0, ∀𝑖 ∈ 𝑓𝑞 . (4)

Before proceeding further, the following Assumptions and Lemmas 
are introduced.

Assumption 1.  For any 𝑖 ∈ 𝑓 , 
(

𝑨𝑖,𝑩𝑖
) are stabilizable, and (𝑪 𝑖,𝑨𝑖)

are detectable.

Assumption 2.  The following regulator equations,

𝑿𝑖𝑨0 =𝑨𝑖𝑿𝑖 + 𝑩𝑖𝑼 𝑖,

0 =𝑪 𝑖𝑿𝑖 − 𝑪0, (5)

have solution pairs (𝑿𝑖,𝑼 𝑖) for all 𝑖 ∈ 𝑓 .

Assumption 3.  The following linear matrix equations,

𝑿𝐹 𝑖𝑨𝐹 =𝑨𝑖𝑿𝐹 𝑖 + 𝑩𝑖𝑼𝐹 𝑖,

0 =𝑪 𝑖𝑿𝐹 𝑖 − 𝑪𝐹 , (6)

have solution pairs (𝑿𝐹 𝑖,𝑼𝐹 𝑖) for all 𝑖 ∈ 𝑓 .

Assumption 4.  The partition {𝑓1,𝑓2,… ,𝑓𝑁𝑙
} is an acyclic parti-

tion for the set of followers 𝑓 .

It follows from Assumptions 4 that 𝜎(𝑡)
1  has the following form [27]

𝜎(𝑡)
1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜎(𝑡)
𝑔1

𝟎𝑔1×𝑔2 ⋯ 𝟎𝑔1×𝑔𝑁
𝜎(𝑡)
𝑔21

⋱ 𝟎𝑔2×𝑔𝑁
⋮ 𝜎(𝑡)

𝑔𝑖𝑗
⋱ ⋮

𝜎(𝑡)
𝑔𝑁1

⋯ ⋯ 𝜎(𝑡)
𝑔𝑁

⎤

⎥

⎥

⎥

⎥

⎦

,

where 𝜎(𝑡)
𝑔𝑖

 represents the switching interaction among the agents 
in subgroup 𝑖. The switching interaction between the followers of 
subgroups 𝑖 and 𝑗 is defined as 𝜎(𝑡)

𝑔𝑖𝑗
.

Assumption 5.  For any subgroup 𝑞 = {leader 𝑘,𝑓𝑘}, the corre-
sponding switching communication topology contains a spanning tree 
with the 𝑘th leader as its root node.

Assumption 6.  For any given subgroups 𝑖 and 𝑗 , 𝑖, 𝑗 ∈ {1, 2,… , 𝑁𝑙}, 
𝑖 ≠ 𝑗, the sum of each row of 𝜎(𝑡)

𝑔𝑖𝑗
 is equal to zero.

Lemma 1 ([18]).  Under Assumptions  4–6, all eigenvalues of 𝜎(𝑡)
1  have 

positive real parts, and −(𝜎(𝑡)
1 )−1𝜎(𝑡)

2  has the following form

−(𝜎(𝑡)
1 )−1𝜎(𝑡)

2 =

⎡

⎢

⎢

⎢

⎢

𝟏𝑔1 𝟎𝑔1 ⋯ 𝟎𝑔1
𝟎𝑔2 𝟏𝑔2 ⋯ 𝟎𝑔2
⋮ ⋮ ⋱ ⋮

𝟎 𝟎 ⋯ 𝟏

⎤

⎥

⎥

⎥

⎥

.

⎣
𝑔𝑁𝑙 𝑔𝑁𝑙 𝑔𝑁𝑙 ⎦
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Lemma 2 ([20]).  Under Assumptions  4–6, there is a real diagonal matrix 
𝜎(𝑡) = diag{𝑑𝜎(𝑡)1 ,… , 𝑑𝜎(𝑡)𝑀 } with 𝑑𝜎(𝑡)𝑖 > 0, 𝑖 = 1,… , 𝑁𝑓 , such that 
𝜎(𝑡)𝜎(𝑡)

1 + (𝜎(𝑡)
1 )⊤𝜎(𝑡) > 0.

Remark 2. Assumptions  1–3 are fairly standard in the formation 
tracking for HMASs [13–15]. Assumptions  4–6 are commonly employed 
for group cooperative control problems [18–21,26–28].

Remark 3.  Compared to the results on the format of time-varying for-
mation shape in [11,13,18–20], which require the input matrix of the 
followers to be full column rank, the format (6) presented in this paper, 
which is based on the output regulation strategy, does not require this 
condition. This format not only features a simple structure but also 
allows the time-varying formation shape to be designed independently.

3. Main results

In this section, the distributed observer for the followers will be 
presented. Then, the GFTC protocols will be given.

3.1. Distributed observer

As the states of the leaders might not be accessible to all followers, it 
is essential to develop distributed observers by utilizing the information 
from neighboring agents to estimate the state of the leader in each 
subgroup.

For each follower in any subgroup 𝑞 = {leader 𝑞,𝑓𝑞}, 𝑘 =
1,… , 𝑁𝑙, the following distributed observer is given, 

𝜼̇𝑖 =𝑨0𝜼𝑖 − 𝜇𝑷 0𝜹𝑖, (7a)

𝜹𝑖 =
𝑁𝑙
∑

𝑘=1
𝑎𝜎(𝑡)𝑖0𝑘

(

𝜼𝑖 − 𝒙0𝑘
)

+
𝑁𝑓
∑

𝑗=1
𝑎𝜎(𝑡)𝑖𝑗

(

𝜼𝑖 − 𝜼𝑗
)

, (7b)

where 𝜼𝑖 is the state of the distributed observer, 𝜹𝑖 denotes the neigh-
boring relative estimation errors, 𝜇 > 0 is a constant, and 𝑷 0 is a real 
positive definite matrix to be determined later.

Then, the following theorem on the proposed distributed observer 
is presented.

Theorem 1.  Consider the distributed observer (7) under Assumptions  4–6. 
Let 𝜇, 𝑷 0, and the average dwell time 𝜏𝑑 be chosen such that

1. 𝜇 ≥ max
{

𝜆max(𝜎(𝑡))
𝜆min(𝜱𝜎(𝑡))

}

(𝜎(𝑡) ∈ {1,… , 𝑠}),

2. 𝑷 0𝑨0 +𝑨⊤
0 𝑷 0 − 𝑷 2

0 + I𝑛0 = 0,
3. 𝜏𝑑 > ln 𝛼

𝜌 ,

where 𝜱𝜎(𝑡) = 𝜎(𝑡)𝜎(𝑡)
1 + (𝜎(𝑡)

1 )⊤𝜎(𝑡), 𝜌 = 1
𝜆max(𝐏0)

, and 𝛼 =

max
{

𝜆max(𝑚)
𝜆min(𝑛)

}

(𝑚, 𝑛 ∈ {1,… , 𝑠}). Then, for each follower in any subgroup 
𝑞 = {leader 𝑞,𝑓𝑞}, lim𝑡→+∞‖𝜼𝑖(𝑡) − 𝒙0𝑞(𝑡)‖ = 0.

Proof.  Let 𝜼̃𝑖 = 𝜼𝑖 − 𝒙0𝑞 . From (2) and (7), one has 
̇̃𝜼𝑖 = 𝑨0𝜼̃𝑖 − 𝜇𝑷 0𝜹𝑖. (8)

Let 𝜼̃ = [𝜼̃⊤1 ,… , 𝜼̃⊤𝑁𝑓
]⊤, 𝒙0 = [𝒙⊤01,… ,𝒙⊤0𝑁𝑙

]⊤, 𝜼 = [𝜼⊤1 ,… , 𝜼⊤𝑁𝑓
]⊤, and 

𝜹 = [𝜹⊤1 ,… , 𝜹⊤𝑀 ]⊤. From Lemma  1, one has
𝜼̃ = 𝜼+

((

(𝜎(𝑡)
1 )−1𝜎(𝑡)

2

)

⊗ I𝑛0
)

𝒙0 and 𝜹 = (𝜎(𝑡)
1 ⊗I𝑛0 )𝜼+(𝜎(𝑡)

2 ⊗I𝑛0 )𝒙0 =

(𝜎(𝑡)
1 ⊗ I𝑛0 )𝜼̃. It then follows that the compact form of (8) can be 

rewritten as follows, 
̇̃𝜼 =

(

I𝑀 ⊗𝑨0 − 𝜇
(

𝜎(𝑡)
1 ⊗ 𝑷 0

))

𝜼̃. (9)

Consider the following piecewise Lyapunov-like function 
𝑉 = 𝜼̃⊤(𝜎(𝑡) ⊗ 𝑷 0)𝜼̃. (10)
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It can be seen that 𝜎(𝑡) keeps fixed on each interval [𝑡ℎ, 𝑡ℎ+1). Then, 
calculating the time derivative of (10) along the trajectory of (9) in each 
interval [𝑡ℎ, 𝑡ℎ+1), one has
𝑉̇ =𝜼̃⊤

(

𝜎(𝑡) ⊗
(

𝑷 0𝑨0 +𝑨⊤
0 𝑷 0 − 𝑷 2

0
))

𝜼̃

+ 𝜼̃⊤
(

(𝜎(𝑡) − 𝜇𝜱𝜎(𝑡))⊗ 𝑷 2
0
)

𝜼̃. (11)

Note that 𝜇 ≥ max
{

𝜆max(𝜎(𝑡))
𝜆min(𝜱𝜎(𝑡))

}

(𝜎(𝑡) ∈ {1, 2,… , 𝑠}) and 𝑷 0𝑨0 +

𝑨⊤
0 𝑷 0 − 𝑷 2

0 + I𝑛0 = 0. Then, from (11), one can obtain that 

𝑉̇ ≤ −𝜼̃⊤
(

𝜎(𝑡) ⊗ I𝑛0
)

𝜼̃ ≤ −𝜌𝑉 (𝑡). (12)

Based on (12), one has 
𝑉 (𝑡−ℎ+1) ≤ 𝑒−𝜌(𝑡ℎ+1−𝑡ℎ)𝑉 (𝑡ℎ). (13)

Via (10), one can obtain that 𝜆min
(

𝜎(𝑡)) 𝜼̃⊤(I𝑀 ⊗ 𝑷 0)𝜼̃ ≤ 𝑉 ≤
𝜆max

(

𝜎(𝑡)) 𝜼̃⊤(I𝑀 ⊗𝑷 0)𝜼̃. It follows from Lemma  1 that 𝜂̃ is continuous 
over [𝑡1,+∞). Recalling that 𝛼 = max

{

𝜆max(𝑚)
𝜆min(𝑛)

}

(𝑚, 𝑛 ∈ {1,… , 𝑠}), one 
can obtain that 
𝑉 (𝑡ℎ+1) ≤ 𝛼𝑉 (𝑡−ℎ+1). (14)

It then follows from (13) and (14) that 
𝑉 (𝑡ℎ+1) ≤ 𝛼𝑒−𝜌(𝑡ℎ+1−𝑡ℎ)𝑉 (𝑡ℎ). (15)

For any given time 𝑡 within the interval [𝑡ℎ+1, 𝑡ℎ+2), by employing 
the recursion approach, it can be derived from (15) that 
𝑉 (𝑡) ≤ 𝑒−𝜌(𝑡−𝑡ℎ+1)𝑉 (𝑡ℎ+1) ≤ 𝛼𝑘𝑒−𝜌(𝑡−𝑡1)𝑉 (𝑡1). (16)

Via Definition  1, we have 𝑘 ≤ 𝑁0 +
𝑡−𝑡1
𝜏𝑑
. Then, from (16), one can 

obtain that

𝑉 (𝑡) ≤ 𝛼
𝑡−𝑡1
𝜏𝑑 𝑒−𝜌(𝑡−𝑡1)𝛼𝑁0𝑉 (𝑡1)

= 𝑒
−(𝜌− ln 𝛼

𝜏𝑑
)(𝑡−𝑡1)𝛼𝑁0𝑉 (𝑡1). (17)

Since the average dwell time 𝜏𝑑 > ln 𝛼
𝜌 , it can be derived from 

(17) that lim𝑡→+∞‖𝜼̃(𝑡)‖ = 0. Thus, for each follower in any subgroup 
𝑞 = {leader 𝑞,𝑓𝑞}, 𝑞 = 1,… , 𝑁𝑙, lim𝑡→+∞‖𝜼𝑖(𝑡)−𝒙0𝑘(𝑡)‖ = 0. The proof 
is thus completed. □

Remark 4.  Since (𝑨0, I𝑛0 ) is controllable, there exists a unique solution 
𝑷 0 to the algebraic Riccati equation stated in Theorem  1.

3.2. Time-varying GFTC protocol

The GFTC protocol is constructed as follows: 
𝒖𝑖 =𝑲1𝑖𝒙̂𝑖 +𝑲2𝑖𝜂𝑖 +𝑲3𝑖𝒉𝑥𝑖, (18a)
̇̂𝒙𝑖 =𝑨𝑖𝒙̂𝑖 + 𝑩𝑖𝒖𝑖 +𝑳𝑖(𝑪 𝑖𝒙̂𝑖 − 𝒚𝑖), (18b)

where 𝒙̂𝑖 is the state of the Luenberger observer, 𝜂𝑖 is the state of 
the distributed observer, 𝑲1𝑖, 𝑲2𝑖, 𝑲3𝑖, and 𝑳𝑖 are matrices to be 
determined later.

Theorem 2.  Suppose that Assumptions  1–6 hold. Let 𝑲1𝑖 and 𝑳𝑖 be chosen 
such that 𝑨𝑖 + 𝑩𝑖𝑲1𝑖 and 𝑨𝑖 + 𝑳𝑖𝑪 𝑖 are Hurwitz. 𝑲2𝑖 and 𝑲3𝑖 can be 
design as 𝑲2𝑖 = 𝑼 𝑖 −𝑲1𝑖𝑿𝑖 and 𝑲3𝑖 = 𝑼𝐹 𝑖 −𝑲1𝑖𝑿𝐹 𝑖, where (𝑼 𝑖,𝑿𝑖) and 
(𝑼𝐹 𝑖,𝑿𝐹 𝑖) are the solutions of (5) and (6), respectively. Then, the GFTC 
problem with switching topologies described by (4) is addressed under the 
distributed protocol (18).

Proof.  For any subgroup 𝑞 = {leader 𝑞,𝑓𝑞}, 𝑞 = 1,… , 𝑁𝑙, let 
𝒆𝑖 = 𝒙𝑖 −𝑿𝑖𝒙0𝑞 −𝑿𝐹 𝑖𝒉𝑥𝑖. It follows from (1), (2), (7), and (18) that 

𝒆̇𝑖 =
(

𝑨𝑖 + 𝑩𝑖𝑲1𝑖
)

𝒆𝑖 + 𝑩𝑖𝑲2𝑖𝜼̃𝑖 + 𝑩𝑖𝑲1𝑖𝒙̃𝑖, (19a)
̇̃𝒙𝑖 =(𝑨𝑖 +𝑳𝑖𝑪 𝑖)𝒙̃𝑖, (19b)

where 𝜼̃ = 𝜼 − 𝒙  and 𝒙̃ = 𝒙̂ − 𝒙 .
𝑖 𝑖 0𝑞 𝑖 𝑖 𝑖
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Since 𝑨𝑖 + 𝑳𝑖𝑪 𝑖 is Hurwitz, via (19b), one can obtain that
lim𝑡→+∞ ‖𝒙̃𝑖(𝑡)‖ = 0 exponentially. Note that lim𝑡→+∞‖𝜼̃𝑖(𝑡)‖ = 0 and 
𝑨𝑖+𝑩𝑖𝑲1𝑖 is Hurwitz, it then follows from (19) that lim𝑡→+∞‖𝒆𝑖 (𝑡) ‖ = 0. 
Moreover, since 𝒆𝑦𝑖 = 𝑪 𝑖𝒆𝑖 = 𝒚𝑖 − 𝒉𝑦𝑖 − 𝒚0𝑞 , one has lim𝑡→+∞‖𝒆𝑦𝑖(𝑡)‖ = 0, 
which means the GFTC problem with switching topologies described 
by (4) is addressed. The proof is thus completed. □

Remark 5.  The convergence rate of 𝑒𝑖(𝑡) is dependent on the maximum 
real part of the eigenvalues of 𝑨𝑖+𝑩𝑖𝑲1𝑖, the maximum real part of the 
eigenvalues of 𝑨𝑖 + 𝑳𝑖𝑪 𝑖, and the convergence rate of the distributed 
observer error. By choosing different gain matrices 𝑲1𝑖 and 𝑳𝑖, the 
eigenvalues of the matrices 𝑨𝑖 +𝑩𝑖𝑲1𝑖 and 𝑨𝑖 +𝑳𝑖𝑪 𝑖 can be placed to 
different locations, thereby affecting the convergence rate of the group 
formation tracking error.

Remark 6.  A sufficient condition for achieving the desired group 
formation tracking under switching topologies is that the average dwell 
time of the switching signal satisfies 𝜏𝑑 > ln 𝛼

𝜌 . If this condition is 
satisfied, our proposed method can solve the GFTC problem; otherwise, 
our method cannot guarantee the achievement of the desired group 
formation tracking.

4. Simulation

This section gives a simulation to illustrate the effectiveness of the 
theoretical result.

The HMAS is divided into three groups, each led by a single leader. 
The first two groups each consist of one leader and three followers, 
while the third group includes one leader and four followers. The 
switching topologies are given in Fig.  2.

Fig. 2. Switching topologies 𝜎(𝑡) with 𝜎(𝑡) ∈ {1, 2}.

The system matrices of the followers adopted from [13] are given 
by

𝑨𝑖 =I2 ⊗
[

0 1
𝛼𝑖 𝛽𝑖

]

,𝑩𝑖 = I2 ⊗
[

0
1

]

,𝑪 𝑖 = I2 ⊗ [1 0] ,

𝑨𝑗 =I2 ⊗ 0,𝑩𝑗 = I2,𝑪𝑗 = I2,

where 𝑖 = {1,… , 8}, 𝑗 = {9, 10}, the parameters {𝛼𝑖, 𝛽𝑖} are set as 
{−2 −4}, {−1 −2}, {−3 −5}, {−3 −3}, {−1 −1}, {−2 −2}, {−4 −4}, 
and {−5 − 5}.

The system matrices of the leaders are given as follows:

𝑨0 = I2 ⊗
[

0 1
0 0

]

,𝑪0 = I2 ⊗ [1 0] .
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The time-varying formation vectors for each group are denoted as

𝒉𝑥𝑝(𝑡) = 15

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sin
(

𝑡 + (𝑝−1)2π
3

)

cos
(

𝑡 + (𝑝−1)2π
3

)

cos
(

𝑡 + (𝑝−1)2π
3

)

− sin
(

𝑡 + (𝑝−1)2π
3

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑝 = 1, 2, 3,

𝒉𝑥𝑞(𝑡) = 10

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sin
(

𝑡 + (𝑞−4)2π
3

)

cos
(

𝑡 + (𝑞−4)2π
3

)

cos
(

𝑡 + (𝑞−4)2π
3

)

− sin
(

𝑡 + (𝑞−4)2π
3

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑞 = 4, 5, 6,

𝒉𝑥𝑟(𝑡) = 15

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sin
(

𝑡 + (𝑟−7)π
2

)

cos
(

𝑡 + (𝑟−7)π
2

)

cos
(

𝑡 + (𝑟−7)π
2

)

− sin
(

𝑡 + (𝑟−7)π
2

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑟 = 7, 8, 9, 10,

and 𝑪𝐹 = I2 ⊗
[

1 0
]

. Solving the regulator Eqs. (5) and (6) yields 

𝑿𝑖 =I2 ⊗
[

1 0
0 1

]

,𝑼 𝑖 = I2 ⊗
[

−𝛼𝑖 −𝛽𝑖
]

,

𝑿𝑗 =I2 ⊗
[

1 0
]

,𝑼 𝑗 = I2 ⊗
[

0 1
]

,

𝑿𝐹 𝑖 =I2 ⊗
[

1 0
0 1

]

,𝑼𝐹 𝑖 = I2 ⊗
[

−1 − 𝛼𝑖 −𝛽𝑖
]

,

𝑿𝐹𝑗 =I2 ⊗
[

1 0
]

,𝑼𝐹𝑗 = I2 ⊗
[

0 1
]

.

It can be derived from Theorem  1 that the average dwell time 
𝜏𝑑 > 7.3958 s. Therefore, the switching period between 1 and 2 can be 
set as 10 s. Define 𝑷 0 = I2⊗

[

0.9102 0.4142
0.4142 1.2872

]

 and 𝜇 = 25. Select 𝑲11 =

I2⊗[1.5 2.5], 𝑲12 = I2⊗[0.5 0.5], 𝑲13 = I2⊗[2.5 3.5], 𝑲14 = I2⊗[2.5 1.5], 
𝑲15 = I2 ⊗ [0.5 − 0.5], 𝑲16 = I2 ⊗ [1.5 0.5], 𝑲17 = I2 ⊗ [3.5 2.5], 𝑲18 =
I2 ⊗ [4.5 3.5], 𝑲19 = I2 ⊗ −0.5, 𝑲110 = I2 ⊗ −0.5, 𝑳1 = I2 ⊗ [2.5 − 8.5]⊤, 
𝑳2 = I2 ⊗ [0.5 − 0.5]⊤, 𝑳3 = I2 ⊗ [3.5 − 15]⊤, 𝑳4 = I2 ⊗ [1.5 − 2]⊤, 
𝑳5 = I2 ⊗ [−0.5 1]⊤, 𝑳6 = I2 ⊗ [0.5 0.5]⊤, 𝑳7 = I2 ⊗ [2.5 − 6.5]⊤, 
𝑳8 = I2⊗[3.5 − 13]⊤, 𝑳9 = I2⊗−0.5, 𝑳10 = I2⊗−0.5, 𝑲2𝑖 = I2⊗[0.5 1.5], 

𝑲2𝑗 = I2⊗[0.5 1], 𝑲3𝑖 = I2⊗[−0.5 1.5], 𝑲3𝑗 = I2⊗[0.5 1] with 𝑖 = 1,…8
and 𝑗 = 9, 10. The initial states of the followers are randomly generated 
within the range of −5 to 5. The initial states of the leaders are set 
as [𝛩 − 1 𝛩 1]⊤, [𝛩 1 𝛩 − 1]⊤, and [𝛩 1 𝛩 1]⊤ with 𝛩 a random value 
between (−0.5, 0.5). The initial states of the distributed observer are set 
as 𝟎4.

Simulation results are presented in Figs. 3–5. Fig.  3 depicts the 
output trajectory of the HMAS over the simulation period. Here, groups 
one to three are color-coded as red, green, and blue, respectively, with 
pentagram markers indicating the leaders and circles representing the 
followers. It can be seen from Fig.  3 that the HMAS is divided into 
three distinct groups, with the followers of each group successfully 
forming the desired formation and tracking their respective leader. Fig. 
4 illustrates the group formation tracking errors. It can be observed 
that lim𝑡→+∞ ‖𝒆𝑦𝑖(𝑡)‖ = 0. Additionally, it can be seen from Fig.  5 that 
lim𝑡→+∞ ‖𝜼(𝑡)‖ = 0. This indicates that the states of the distributed 
observer (7) tend to the state of the leader in each subgroup as time 
goes to infinity.

Fig. 3. Output trajectories.

Fig. 4. The group formation tracking errors: (a) Subgroup 1; (b) Subgroup 2; (c) Subgroup 3.
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Fig. 5. The distributed observer error.

5. Conclusion

This paper investigates the time-varying output GFTC problem for 
HMASs under switching topologies. We have designed distributed ob-
servers that enable the followers to estimate the states of the leaders 
for each group under switching topologies. Then, an observed-based 
GFTC protocol is developed. Based on piecewise Lyapunov stability 
theory, the threshold for the average dwell time associated with the 
switching topologies has been established, and the convergence of 
both distributed observer error and GFTC error has been proven. The 
effectiveness of the proposed control strategy has been verified through 
a simulation example. In the future, we will investigate the GFTC 
problem for HMASs under jointly connected digraphs and the finite-
time GFTC problem. Additionally, it is interesting to study the robust 
GFTC problem for HMASs subject to external disturbances or other 
uncertainties.
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