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 a b s t r a c t

This article investigates the problem of fixed-time time-varying formation tracking control (FTC) 
for heterogeneous linear multiagent systems (MASs) under the directed communication graph. It is 
assumed that the Laplacian matrix associated with the communication graph is unavailable and that 
the system matrices of the leader are only available to its neighboring followers. This differs from many 
existing works on fixed-time FTC problems where the communication graphs are typically undirected 
and protocol designs often rely on certain global information. A novel distributed observer is first put 
forward to estimate both the state and system matrices of the leader in fixed time. Then, an adaptive 
scheme is developed to solve the time-varying regulator equations resulting from the estimated leader 
system matrices in fixed time. Based on the proposed observer and the adaptive solutions to the 
regulator equations, a distributed adaptive fixed-time FTC protocol is further proposed via coordinate 
transformation techniques. It is shown that our proposed controllers do not require the input matrices 
of the followers to be of full row rank. It is also shown that the concerned fixed-time FTC problem 
can be solved with the proposed fixed-time FTC strategy in a distributed manner. Our results can be 
directly applied to solve both the adaptive fixed-time cooperative output regulation problem and the 
leader-following consensus problems of MASs under the directed graph. Finally, the effectiveness of 
the proposed fixed-time FTC strategy is demonstrated through a numerical example.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
1. Introduction

Cooperative control of multi-agent systems (MASs) has at-
tracted considerable attention over the recent decades from a 
variety of fields, such as robotics, sensor networks, and power 
systems (Cai et al., 2017; Fang & Wen, 2025; Fax & Murray, 2004; 
Firouzbahrami & Nobakhti, 2022; He et al., 2025, 2024; Lin et al., 
2022; Olfati-Saber & Murray, 2004; Sun et al., 2021; Wieland 
et al., 2011). A prominent research topic of cooperative control 
is formation control, which aims to establish control protocols to 
achieve a specific formation (Huang et al., 2024; Liu & Li, 2024; 
Ren, 2007; Yang et al., 2023). In addition to simply forming a for-
mation, in many real-world applications, MASs are also required 
to follow a trajectory provided by a leader. This requirement gives 
rise to the so-called formation tracking control (FTC) problem. 
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Various FTC strategies have been developed for different types 
of MASs, including first or second-order agent dynamics, general 
homogeneous agent dynamics, and general heterogeneous agent 
dynamics (Feng et al., 2024; Li et al., 2024; Liu et al., 2022; Porfiri 
et al., 2007).

Most of the above-mentioned results on cooperative control 
of MASs focus on guaranteeing either asymptotic or exponential 
stability of the closed-loop systems. However, in many practical 
applications, it is often necessary or desirable to achieve those 
objectives in a finite time. Known for its fast convergence, high 
precision, and strong robustness, finite-time control has attracted 
significant attention and numerous notable results have been 
recently reported, see, for example, Cai et al. (2020), Fu and Wang 
(2016), Wang et al. (2024, 2020, 2021), Xiao et al. (2009). Unfor-
tunately, one notable limitation of finite-time control is that the 
upper bound of the settling time depends on the initial conditions 
of the concerned MASs. To address this issue, a fixed-time control 
protocol, whose upper bound of the settling time does not depend 
on the initial conditions, was first proposed in Polyakov (2011). 
Since then, extensive research has been conducted on cooperative 
control of MASs with fixed-time convergence (Cheng et al., 2022; 
Dong & Chen, 2022; Du et al., 2020; Zuo et al., 2017).

It is worth noting that while the distributed control proto-
cols of MASs in the above-mentioned literature use only local 
data mining, AI training, and similar technologies.
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information from neighboring agents to achieve fixed-time co-
operative control, their protocol designs often rely on certain 
global information of MASs, for instance, the eigenvalues of the 
matrices associated with the communication graphs, or the sys-
tem matrices of the exosystem. To address these issues, adaptive 
techniques have been adopted for distributed fixed-time control 
protocols, see, e.g., Cai et al. (2022), Jiang et al. (2023), Zhang 
et al. (2021), Zuo et al. (2023). However, the adaptive fixed-time 
control protocols in Jiang et al. (2023), Zhang et al. (2021), Zuo 
et al. (2023) depend on the assumption that the communication 
graphs are either undirected or strongly connected. Moreover, the 
designs of those protocols in Cai et al. (2022), Jiang et al. (2023), 
Zhang et al. (2021) require a restrictive assumption, that is, the 
input matrices of the followers are of full-row rank, which might 
not be satisfied in many engineering applications. In addition, it 
was not shown in those works that the solutions to the regulator 
equations can be obtained within a fixed time. To the best of 
our knowledge, the problem of fixed-time FTC for heterogeneous 
MASs under the directed communication graph, which does not 
require the global information associated with the graph nor the 
system matrices of the leader, is yet to be addressed, thereby 
motivating this work.

This work investigates the problem of fully distributed adap-
tive fixed-time FTC for heterogeneous MASs under the directed 
graph. The main contributions of this work are summarized as 
follows. First, a novel distributed adaptive fixed-time observer 
is proposed under the directed communication graph to esti-
mate the state and the system matrices of the leader without 
requiring any global information. This contrasts with the fixed-
time observers presented in previous studies (Cheng et al., 2022; 
Dong & Chen, 2022; Du et al., 2020; Zuo et al., 2017), which are 
not fully distributed. Moreover, the asymmetry of the Laplacian 
matrix in the directed graph presents additional challenges for 
both fully distributed observer design and stability analysis com-
pared to their counterparts in undirected or strongly connected 
graphs (Jiang et al., 2023; Zhang et al., 2021; Zuo et al., 2023). Sec-
ond, compared to the approaches in Cai et al. (2022), Jiang et al. 
(2023), Zhang et al. (2021), where the solutions to the regulator 
equations can only be obtained when time goes to infinity, a novel 
adaptive scheme is developed to solve the regulator equations in 
fixed time, and also in a fully distributed manner.

Notation: In represent the n-dimensional identity matrix. 0
denotes the zero matrix, and its dimension can be known from 
the context. The Kronecker product is denoted as ⊗. Let diag{a1,
. . . , an} be the diagonal matrix with ai, i = 1, . . . , n, as its 
diagonal entries. ∥ ·∥ and ∥ ·∥p denote the Euclidean norm and p-
norm for vectors, respectively. For a vector X = [x1, . . . , xn]⊤ ∈

Rn, define signα(X ) = [sign(x1)|x1|α, . . . , sign(xn)|xn|α]⊤, where 
α > 0 and sign(·) is the sign function. Let min(·) and max(·) be 
the minimum and maximum element of an array, respectively. 
Consider a matrix A = [a1, . . . , aq] ∈ Rp×q, where ai ∈ Rp×1, 
i = 1, . . . , q. Define Avec = vec(A) = [a⊤

1 , . . . , a
⊤
q ]

⊤, and let 
A = Mq

p(Avec) represent the transformation between the matrix 
A and the corresponding column vector Avec.

2. Preliminaries and problem formulation

2.1. Algebraic graph theory

Considers a heterogeneous MAS consisting of M followers and 
one leader. An agent is classified as a leader if it has no neighbors; 
otherwise, it is defined as a follower. The digraph among the 
followers is defined as Gf = (Vf , Ef ,Af ), which consists of Vf =

{1, . . . ,M}, Ef ⊆ Vf × Vf , and the adjacency matrix Af =[
aij
]
M×M with aij > 0 ⇔ (j, i) ∈ Ef  and aij = 0 otherwise. Let 

a  be the pinning gain from the leader to the ith follower. In 
i0

2

particular, ai0 > 0 if information transmission between them is 
feasible; otherwise, ai0 = 0. Let Ḡ = (V̄, Ē, Ā) be the directed 
communication topology among the followers and the leader. A 
spanning tree is a directed graph where at least one root node is 
connected by a directed path to every other node.

2.2. Problem formulation

The dynamics of the ith follower are described by
ẋi (t) =Aixi(t) + Biui(t),

yi (t) =Cixi (t) , i ∈ Vf , (1)

where xi ∈ Rni , ui ∈ Rmi , yi ∈ Rp represent the state, control 
input, and output of the ith follower, respectively, Ai, Bi, and Ci
are the system matrices satisfying rank(Bi) = mi.

The dynamics of the leader indexed by 0 are given as
ẋ0(t) =Sx0(t),

y0(t) =Fx0(t), (2)

where x0 ∈ Rn0  and y0 ∈ Rp represent the state and output of the 
leader, respectively, S and F  are system matrices of the leader.

The piecewise continuous differentiable formation vector
hoi(t) ∈ Rp of the ith follower is generated by the following 
system,

ḣi(t) =Shhi(t),

hoi(t) =Fhhi(t), i ∈ Vf , (3)

where hi ∈ Rl, Sh and Fh are matrices of compatible dimensions.
Then, the fixed-time FTC problem under consideration is de-

fined as follows.

Definition 1 (Fixed-time FTC problem). Given the heterogeneous 
MAS consisting of (1) and (2) under the directed graph Ḡ, design 
a distributed control protocol for each follower such that
lim
t→To

(yi(t) − hoi(t) − y0(t)) = 0,

yi(t) − hoi(t) − y0(t) = 0, t ≥ To, ∀i ∈ Vf , (4)

where To > 0 represents the settling time that is independent of 
the initial conditions.

This paper aims to design a fully distributed fixed-time control 
protocol so that the fixed-time FTC problem can be solved in a 
fully distributed manner without global information, such as the 
eigenvalues of the matrices associated with the communication 
graphs, or the system matrices of the leader.

Remark 1.  The formation vector hoi(t), generated by Eq.  (3), spec-
ifies the desired relative offset of yi(t) relative to y0(t). Various 
formation shapes can be generated using Eq. (3). For instance, 
setting Sh = 0 allows (3) to specify a non-rotating time-invariant 
formation shape. Additionally, a three-dimensional circular for-
mation, as discussed in Li et al. (2024), Wang et al. (2024), can be 
formed by setting Sh =

(
0 1

−c2 0

)
 and Fh =

(
1 0

)
 for the X , Y , 

and Z axes, respectively, where c denotes a positive constant.
Before presenting the main results, the following assumptions 

and lemma are put forward.

Assumption 1.  The digraph Ḡ contains a spanning tree with the 
leader as its root node.

Then, the corresponding Laplacian matrix L̄ can be partitioned 
as 
[
Lf Ll
0 0

]
, where Ll = [−a0i]M×1, Lf =

[
lij
]
M×M with lij = −aij

for i ̸= j, and l =
∑M a + a .
ii k=1 ik i0
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Lemma 1 (Qu, 2009). Under Assumption  1, all eigenvalues of Lf
have positive real parts. Moreover, there exists a real diagonal matrix 
D̄ such that Q̄ = D̄Lf + L⊤

f D̄ > 0.

Define D = diag{d1, . . . , dM} =
2D̄
λmin

, where λmin > 0 be the 
smallest eigenvalue of Q̄, di > 0, i = 1, . . . ,M . Then, by Lemma 
1, one has Q = DLf + L⊤

f D ≥ 2IM .

Assumption 2.  For any i ∈ Vf , (Ai, Bi) are controllable.

Assumption 3.  The regulator equations, 
XiS =AiXi + BiUi, (5a)

0 =CiXi − F , (5b)

have solution pairs (Xi,Ui) for all i ∈ Vf .

Assumption 4.  The linear matrix equations, 
XhiSh =AiXhi + BiUhi, (6a)

0 =CiXhi − Fh, (6b)

have solution pairs (Xhi,Uhi) for all i ∈ Vf .

Remark 2. Assumptions  1–4 are necessary for achieving the FTC 
for heterogeneous MASs as in Cai et al. (2022), Cheng et al. (2023). 
The solvability of Eqs. (5) can be referred to Huang (2004).

3. Main results

In this section, fully distributed fixed-time observers, the adap-
tive scheme to solve the regulator equations, and distributed 
fixed-time control protocols will be provided to address the 
fixed-time FTC problem for the concerned MAS.

3.1. Distributed adaptive fixed-time observers

To estimate the state and the system matrix of the leader, a 
fixed-time distributed observer is first proposed for each follower 
as follows: 
η̇i =Siηi − (c1i + ε⊤

i εi)εi − c2signα1 (εi) − c3signα2 (εi), (7a)

ċ1i =ε⊤

i εi, (7b)
̇̂S0i = − c4signβ1 (S̄0i) − c5signβ2 (S̄0i), (7c)
̇̂F0i = − c6signγ1 (F̄0i) − c7signγ2 (F̄0i), (7d)

where εi =
∑M

j=1 aij(ηi− ηj)+ ai0(ηi−x0), S̄0i =
∑M

j=1 aij(Ŝ0i − Ŝ0j)
+ai0(Ŝ0i − S0), F̄0i =

∑M
j=1 aij(F̂0i− F̂0j)+ai0(F̂0i − F0), ηi represents 

the state of the distributed observer used to estimate x0, S0 =

vec(S), F0 = vec(F ), S̄0i, F̄0i, and εi denote the neighboring relative 
estimation errors for S0, F0, and x0, respectively, Ŝ0i ∈ Rn20  and 
F̂0i ∈ Rpn0  are the estimates of the vector S0 and F0 respectively 
via follower i, Si = Mn0

n0 (Ŝ0i), Fi = Mn0
p (F̂0i), c1i is the adaptive 

updating gain satisfying c1i(0) > 0, cj, j = 2, . . . , 6, α1, α2, β1, β2, 
γ1, and γ2 are positive constants to be determined later.

The following theorem shows that the observer errors S̃0i ≜
Ŝ0i − S0, F̃0i ≜ F̂0i − F0, and η̃i ≜ ηi (t) − x0(t) are fixed-time 
convergent.

Theorem 1.  Consider the leader (2) and the distributed observers 
(7a)–(7d). Select ci > 0, i = 2, . . . , 6, 0 < α1 < 1, α2 >

1
α1
> 1, 

0 < β1 < 1, β2 >
1
β1
> 1, 0 < γ1 < 1, and γ2 > 1

γ1
> 1. Then, for 

all i ∈ Vf , the following properties hold:

1. lim S̃ (t) = 0 and S̃ (t) = 0, t ≥ T ,
t→TS 0i 0i S

3

2. limt→TF F̃0i(t) = 0 and F̃0i(t) = 0, t ≥ TF ,
3. limt→Tη η̃i(t) = 0 and η̃i(t) = 0, t ≥ Tη ,

where TS ≥ 0, TF ≥ 0, and Tη ≥ 0 represent the settling times 
regardless of any initial conditions.

Proof. The proof of Theorem  1 includes three parts. Firstly, we 
show the fixed-time convergence of ̃S0i and F̃0i. Then, we establish 
the boundedness of the observer error η̃i in [0, TS), ensuring that 
no finite-time escape occurs. Lastly, we show that the observer 
error η̃i converges to zero in fixed time.

Part (i): Fixed-time convergence of S̃0i and F̃0i.
Not that S̃0i ≜ Ŝ0i − S0. Letting S̃ = [S̃⊤

01, . . . , S̃
⊤

0M ]
⊤, it then 

follows from (7c) that 
̇̃S = −S̆, (8)

where S̆ = [S̆⊤

01, . . . , S̆
⊤

0M ]
⊤ with S̆0i = c4signβ1 (S̄0i)+c5signβ2 (S̄0i).

Let S̄ = [S̄⊤

01, . . . , S̄⊤

0M ]⊤. Noting that S̄ = (Lf ⊗ In20 )S̃, by (8), 
the dynamics of S̄ can be given by 
̇̄S = −(Lf ⊗ In20 )S̆. (9)

Consider the following Lyapunov function candidate, 

V1 =

M∑
i=1

(
c4di

1 + β1
∥S̄0i∥

1+β1
1+β1

+
c5di

1 + β2
∥S̄0i∥

1+β2
1+β2

)
. (10)

The time derivative of V1 along the trajectory of the system (9) 
is calculated as 

V̇1 = −
1
2
S̆⊤

(
(L⊤

f D + DLf ) ⊗ In20

)
S̆ = −∥S̆∥2. (11)

Given that c4signβ1 (S̄0i) and c5signβ2 (S̄0i) exhibit component-wise 
sign consistency across all their respective elements, the terms 
in the expansion of ∥S̆0i∥2, including both square terms and cross 
terms, are non-negative. Then, one has ∥S̆∥2

≥
∑M

i=1 c
2
4∥S̄0i∥

2β1
2β1

+∑M
i=1 c

2
5∥S̄0i∥

2β2
2β2

. Since 0 < β1 < 1 and β2 > 1, via Lemma 
3 given in Appendix  A, one has 

∑M
i=1 ∥S̄0i∥

2β1
2β1

≥
(
∥S̄∥2

)β1  and ∑M
i=1 ∥S̄0i∥

2β2
2β2

≥
1

(n20M)β2−1

(
∥S̄∥2

)β2 . It then follows that 

V̇1 ≤ −k1
((

∥S̄∥2)β1
+
(
∥S̄∥2)β2) , (12)

where k1 = min{c24 ,
c25

(n20M)β2−1 } > 0.

Since 0 < 1+β1
2 < 1 and 1+β22 > 1, one has 

∑M
i=1

c4di
1+β1

∥S̄i∥
1+β1
1+β1

≤ c̄4
(
∥S̄∥2

) 1+β1
2  and 

∑M
i=1

c5di
1+β2

∥S̄i∥
1+β2
1+β2

≤ c̄5
(
∥S̄∥2

) 1+β2
2 , where 

c̄4 = ( c4dmax
1+β1

)(n2
0M)

1−β1
2 , c̄5 =

c5dmax
1+β2

, and dmax = max{d1, . . . , dM}. 
Since 0 < 2β1

1+β1
< 1 and 2β2

1+β2
> 1, it then follows that

V
2β1
1+β1
1 ≤k2

(
(∥S̄∥2)β1 + (∥S̄∥2)

β1(1+β2)
1+β1

)
, (13)

V
2β2
1+β2
1 ≤k3

(
(∥S̄∥2)

β2(1+β1)
1+β2 + (∥S̄∥2)β2

)
, (14)

where k2 = max{c̄
2β1
1+β1
4 , c̄

2β1
1+β1
5 } and k3 = max {c̄

2β2
1+β2
4 , c̄

2β2
1+β2
5 } ×

2
β2−1
β2+1 . Noting that β1 <

β1(1+β2)
1+β1

< β2 and β1 <
β2(1+β1)
1+β2

< β2, 

one has (∥S̄∥2)
β1(1+β2)

1+β1 ≤ (∥S̄∥2)β1 + (∥S̄∥2)β2  and (∥S̄∥2)
β2(1+β1)

1+β2 ≤

(∥S̄∥2)β1 + (∥S̄∥2)β2 . It then follows from (13) and (14) that

V
2β1
1+β1
1 ≤k2

(
2(∥S̄∥2)β1 + (∥S̄∥2)β2

)
, (15)

V
2β2
1+β2

≤k
(
(∥S̄∥2)β1 + 2(∥S̄∥2)β2

)
. (16)
1 3
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The combination of (15) and (16) yields 
1
3k2

V
2β1
1+β1
1 +

1
3k3

V
2β2
1+β2
1 ≤ (∥S̄∥2)β1 + (∥S̄∥2)β2 . (17)

Then, one can obtain from (12) and (17) that 

V̇1 ≤ −
k1
3k2

V
2β1
1+β1
1 −

k1
3k3

V
2β2
1+β2
1 . (18)

Via Lemma  4 in Appendix  A, one can obtain that system (9) is 
fixed-time stable with the settling time TS ≤

3k3(β1+1)
k1(1−β1)

+
3k2(β2+1)
k1(β2−1) . 

Moreover, since S̄ = (Lf ⊗ In20 )S̃ and Lf  is nonsingular, one has 
limt→TS S̃0i(t) = 0 and S̃0i(t) = 0 for t ≥ TS .

Letting F̃ = [F̃⊤

01, . . . , F̃
⊤

0M ]
⊤ and F̄ = [F̄⊤

01, . . . , F̄⊤

0M ]⊤, one 
has F̄ = (Lf ⊗ Ipn0 )F̃ . Similarly, by using the same approach in 
analyzing the fixed-time convergence of S̃0i(t), one can conclude 
that there exists a settling time TF ≥ 0 regardless of any initial 
states, such that limt→TF F̃i(t) = 0 and F̃i(t) = 0 for t ≥ TF .

Part (ii): Boundedness of ηi in t ∈ [0, TS).
Note that η̃i = ηi − x0. From (2) and (7), one has 

̇̃ηi = Sη̃i − ε̄i + S̃iη̃i + S̃ix0, (19)

where ε̄i = ϕiεi + c2signα1 (εi) + c3signα2 (εi), ϕi = c1i + ε⊤

i εi, and 
S̃i = Mn0

n0 (S̃0i).
Let η̃ = [η̃⊤

1 , . . . , η̃
⊤

M ]
⊤, ε = [ε⊤

1 , . . . , ε⊤

M ]⊤, and ε̄ =
[
ε̄⊤

1 ,

. . . , ε̄⊤

M

]⊤. Noting that ε = (Lf ⊗ In0 )η̃, via (19), one has
ε̇ = (IM ⊗ S) ε −

(
Lf ⊗ In0

)
ε̄

+ (Lf ⊗ In0 )S̃
d(L−1

f ⊗ In0 )ε + (Lf ⊗ In0 )S̃
dx̄0, (20)

where S̃d = diag{S̃1, . . . , S̃M} and x̄0 = 1M ⊗ x0.
Consider the following Lyapunov function candidate, 

V2 = V21 + V22, (21)

where V21 =
∑M

i=1

(
c2di
1+α1

∥εi∥
1+α1
1+α1

+
c3di
1+α2

∥εi∥
1+α2
1+α2

)
+

1
4

∑M
i=1 di(ϕi

+ c1i)ε⊤

i εi, V22 =
1
4

∑M
i=1 di(c1i −µ)2, and µ represents a positive 

constant to be specified.
The time derivative of V2 along the trajectories of (20) satisfies

V̇2 = ε̄⊤(D ⊗ S)ε −
1
2
ε̄⊤
(
Q ⊗ In0

)
ε̄ +

1
2

M∑
i=1

di(ϕi − µ)ċ1i

+ ε̄⊤(DLf ⊗ In0 )S̃
d(L−1

F ⊗ In0 )ε + ε̄⊤(DLf ⊗ In0 )S̃
dx̄0. (22)

Since Q = DLf +L⊤

f D ≥ 2IM , via Young’s inequality, one has 

ε̄⊤(D ⊗ S)ε −
1
2
ε̄⊤
(
Q ⊗ In0

)
ε̄ ≤

1
2
(∥D ⊗ S∥2

∥ε∥2
− ∥ε̄∥2). (23)

From the result of part (i) and (2), it can be seen that S̃i
and x̄0 are bounded for t ∈ [0, TS). Then, there exist positive 
constants ϖ̄1 and ϖ̄2 such that ∥(Lf ⊗In0 )S̃

d(L−1
f ⊗In0 )∥

2
≤ϖ̄1 and 

∥(Lf ⊗ In0 )S̃
dx̄0∥2

≤ ϖ̄2 hold for t ∈[0, TS). Via Young’s inequality, 
one has
ε̄⊤(Lf ⊗ In0 )S̃

d(L−1
F ⊗ In0 )ε + ε̄⊤(Lf ⊗ In0 )S̃

dx̄0

≤
1
2
∥ε̄∥2

+ ϖ̄1∥ε∥
2
+ ϖ̄2. (24)

Since 0 < α1 < 1 and α2 > 1, via Lemma  3, one has ∑M
i=1

c2di
1+α1

∥εi∥
1+α1
1+α1

≥ c̆2(∥ε∥2)
1+α1

2  and 
∑M

i=1
c3di
1+α2

∥εi∥
1+α2
1+α2

≥

c̆3(∥ε∥2)
1+α2

2 , where c̆2 =
c2dmin
1+α1

, c̆3 =
c3dmin
1+α2

(n0M)
1−α2

2 , and dmin =

min{d1, . . . , dM}. Noting that 1+α12 < 1 < 1+α2
2 , one has 

V ≥ k
(
(∥ε∥2)

1+α1
2 + (∥ε∥2)

1+α2
2

)
≥ k ∥ε∥2, (25)
21 c̆ c̆

4

where kc̆ = min{c̆2, c̆3}.
Moreover, via (7b) and (21), one can obtain 1

2

∑M
i=1 di(ϕi −

µ)ċ1i ≤ 2V21. Then, it follows from (22)–(25) that 
V̇2 ≤ kεV21 + ϖ̄2 ≤ kεV2 + ϖ̄2, (26)

where kε =
∥D⊗S∥2+2ϖ̄1

2kc̆
+ 2.

One can further conclude from (26) that V2(t) is bounded in 
t ∈ [0, TS), which implies that εi and ηi are bounded in [0, TS).

Part (iii): Fixed-time convergence of ηi.
When t ≥ TS , one has S̃i = 0. Then, it can be obtained from 

(19) and (20) that 
̇̃ηi = Sη̃i − ε̄i, (27)

and 
ε̇ = (IM ⊗ S) ε −

(
Lf ⊗ In0

)
ε̄. (28)

Based on (7b), (21), and (23), the time derivative of V2 along 
the trajectories of (28) satisfies

V̇2 =ε̄⊤(D ⊗ S)ε −
1
2
ε̄⊤
(
Q ⊗ In0

)
ε̄ +

1
2

M∑
i=1

di(ϕi − µ)ε⊤

i εi

≤
1
2
(∥D ⊗ S∥2

∥ε∥2
− ∥ε̄∥2) +

1
2

M∑
i=1

di(ϕi − µ)ε⊤

i εi. (29)

Note that ε̄i = ϕiεi + c2signα1 (εi) + c3signα2 (εi). Since ϕiεi, 
c2signα1 (εi), and c3signα2 (εi) have component-wise sign consis-
tency across all their respective elements, the terms in the ex-
pansion of ∥ε̄i∥2, including both square terms and cross terms, 
are non-negative. Then, one has 

∥ε̄∥2
≥

M∑
i=1

ϕ2
i ∥εi∥

2
+

M∑
i=1

c22∥εi∥
2α1
2α1

+

M∑
i=1

c23∥εi∥
2α2
2α2
. (30)

Since 0 < α1 < 1 and α2 > 1, via Lemma  3, one has ∑M
i=1 ∥εi∥

2α1
2α1

≥
(
∥ε∥2

)α1  and ∑M
i=1 ∥εi∥

2α2
2α2

≥
1

(n0M)β−1

(
∥ε∥2

)α2 . 
It then follows that 

∥ε̄∥2
≥

M∑
i=1

ϕ2
i ∥εi∥

2
+ c22

(
∥ε∥2)α1

+
c23
(
∥ε∥2

)α2
(n0M)β−1 . (31)

Substituting (31) into (29) yields 

V̇2 ≤ −
1
2

M∑
i=1

Γiε
⊤

i εi −
c22
(
∥ε∥2

)α1
2

−
c23
(
∥ε∥2

)α2
2(n0M)α2−1 , (32)

where Γi ≜ ϕ
2
i − diϕi − ∥D ⊗ S∥2

+ diµ.
Select µ sufficiently large such that µ > dmax

4 +
∥D⊗S∥2
dmin

. In this 
case, the discriminant of the quadratic equation Γi is negative, 
i.e., ∆i ≜ d2i − 4(diµ − ∥D ⊗ S∥2) < 0. Thus, we can obtain that 
Γi ≥ Γi,min ≜ diµ − ∥D ⊗ S∥2

−
d2i
4 > 0, i = 1, . . . ,M . Then, one 

has

V̇2 ≤ −
Γmin∥ε∥

2

2
−

c22
(
∥ε∥2

)α1
2

−
c23
(
∥ε∥2

)α2
2(n0M)α2−1 ,

≤ − ke
(
∥ε∥2

+
(
∥ε∥2)α1

+
(
∥ε∥2)α2)

≤ 0, (33)

where Γmin ≜ min{Γ1,min, . . . ,ΓM,min} > 0 and ke = min{Γmin,
c22
2 ,

c23
2(n0M)α2−1 } > 0.
Since 0 < α1 < 1 and α2 > 1, via Lemma  3, one has ∑M
i=1

c2di
1+α1

∥εi∥
1+α1
1+α1

≤ c̄2(∥ε∥2)
1+α1

2  and 
∑M

i=1
c3di
1+α2

∥εi∥
1+α2
1+α2

≤

c̄3(∥ε∥2)
1+α2

2 , where c̄2 = ( c2dmax
1+α1

)(n0M)
1−α1

2  and c̄3 =
c3dmax
1+α2

. Note 
that 0 < 2α1 < 1 and 2α2 > 1. Then, by Lemma  3 again, one 
1+α1 1+α2
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has

V
2α1
1+α1
21 ≤kα1

(
(∥ε∥2)

2α1
1+α1 + (∥ε∥2)α1 + (∥ε∥2)

α1(1+α2)
1+α1

)
, (34)

V
2α2
1+α2
21 ≤kα2

(
(∥ε∥2)

2α2
1+α2 + (∥ε∥2)α2 + (∥ε∥2)

α2(1+α1)
1+α2

)
, (35)

where kα1 = max{(Γmin)
2α1
1+α1 , c̄

2α1
1+α1
2 , c̄

2α1
1+α1
3 } and kα2 =

max{(Γmin)
2α2
1+α2 , c̄

2α2
1+α2
2 , c̄

2α2
1+α2
3 } × 3

α2−1
α2+1 . Since α1 <

2α1
1+α1

< 1 and 

α1 <
α1(1+α2)
1+α1

< α2, one has (∥ε∥2)
2α1
1+α1 ≤ ∥ε∥2

+ (∥ε∥2)α1  and 

(∥ε∥2)
α1(1+α2)

1+α1 ≤ (∥ε∥2)α1 + (∥ε∥2)α2 . Similarly, since 1 < 2α2
1+α2

<

α2 and α1 <
α2(1+α1)
1+α2

< α2, one has (∥ε∥2)
2α2
1+α2 ≤ ∥ε∥2

+ (∥ε∥2)α2

and (∥ε∥2)
α2(1+α1)

1+α2 ≤ (∥ε∥2)α1 + (∥ε∥2)α2 . It then follows that

V
2α1
1+α1
21 ≤ kα1

(
∥ε∥2

+ 3(∥ε∥2)α1 + (∥ε∥2)α2
)
, (36)

V
2α2
1+α2
21 ≤ kα2

(
∥ε∥2

+ 3(∥ε∥2)α2 + (∥ε∥2)α1
)
. (37)

Combining (36) and (37), one has 

1
4kα1

V
2α1
1+α1
21 +

1
4kα2

V
2α2
1+α2
21 ≤

(
∥ε∥2

+ (∥ε∥2)α2 + (∥ε∥2)α1
)
. (38)

Substituting (38) into (33) yields 

V̇2 ≤ −
ke

4kα1
V

2α1
1+α1
21 −

ke
4kα2

V
2α2
1+α2
21 . (39)

Note that by (7b), c1i is positive due to ċ1i ≥ 0 and ĉ1i(0) > 0. 
Via (33), one can obtain that V2, ε, and c1i are bounded. Letting 
c̄1 ≜ maxi∈Vf c1i and kc =

dmax(µ+c̄1)
2kc̆

, it then follows from (7b), 
(21), (25), and (39) that 

V̇21 = V̇2 − V̇22 ≤ −
ke

4kα1
V

2α1
1+α1
21 −

ke
4kα2

V
2α2
1+α2
21 + kcV21. (40)

Let ℓ1 =

[
(1−θ1)ke
4kα1 kc

] 1+α1
1−α1 , where θ1 ∈ (0, 1). Define a bounded 

set Ω1 = {ε(t) ∥ V21(ε(t)) ≤ ℓ1}. The fixed-time convergence of 
ηi is analyzed under two conditions.

Condition 1: ε(TS) ∈ Ω1
If ε(TS) ∈ Ω1, it then follows from (40) that 

V̇21 ≤ −
ke

4kα1
θ1V

2α1
1+α1
21 −

ke
4kα2

V
2α2
1+α2
21 . (41)

By Lemma  4, it follows from (41) that system (28) is fixed-time 
stable. The corresponding settling time Tη ≤ Tℓ1 ≜

4kα1 (1+α1)
keθ1(1−α1)

+

4kα2 (1+α2)
ke(α2−1) + TS .
Condition 2: ε(TS) ̸∈ Ω1
To proceed with the proof of the fixed-time convergence of ηi

under this condition, the following claim is proved first.
Claim 1: There exists a bounded time T ∗ > TS such that 

ε(T ∗) ∈ Ω1 and ε(t) ∈ Ω1 for all t ≥ T ∗.
This claim is proven by contradiction. Suppose the above con-

clusion is not true. Note that if ε(TS) ̸∈ Ω1, V21(ε(TS)) > ℓ1. Then, 
based on (39), the following inequality holds:
V2 (ε(TS)) ≥ V2 (ε(TS))− V2(ε(T ∗))

≥

∫ T∗

TS

{
ke

4kα1
V

2α1
1+α1
21 +

ke
4kα2

V
2α2
1+α2
21

}
ds ≥ φ(T ∗

− TS), (42)
5

Fig. 1. Sketches of the sets Ω1 and Ω2 . (a) Case 1. (b) Case 2. (c) Case 3.

where φ =
ke

4kα1
ℓ

2α1
1+α1
1 +

ke
4kα2

ℓ

2α2
1+α2
1 .

From (42), one can conclude that V2(ε(TS)) → ∞ as T ∗
→ ∞. 

This contradicts the fact that V2 is bounded. Thus, there exists a 
bounded time T ∗ > TS satisfying ε(T ∗) ∈ Ω1.

If t ≥ T ∗, via (41), one can obtain that the trajectory ε(t) will 
stay in the set Ω1 for all t ≥ T ∗. This completes the proof of Claim 
1.

With this claim established, it follows from (41) that ηi is 
fixed-time convergent.

The rest gives the computation of the settling time Tη .
To proceed, define another set Ω2 = {ε(t) ∥ V21(ε(t)) ≥ ℓ2}, 

where ℓ2 =

[
4kα2 kc
(1−θ2)ke

] 1+α2
α2−1  and θ2 ∈ (0, 1). If ε(t) ∈ Ω2, one has 

V̇21 ≤ −
ke

4kα1
V

2α1
1+α1
21 −

ke
4kα2

θ2V
2α2
1+α2
21 . (43)

It follows from (43) that V21(t) is continuously decreasing. 
Then, the time interval that the trajectory ε(t) reaches the bound-
ary of Ω2 can be upper bounded by Tℓ2 ≤

4kα1 (1+α1)
ke(1−α1)

+
4kα2 (1+α2)
keθ2(α2−1) .

Next, we will discuss the settling time in three cases respec-
tively. Sketches of the sets Ω1 and Ω2 are shown in Fig.  1 for 
easy understanding. ∂Ω1 and ∂Ω2 denote the boundaries of Ω1
and Ω2, respectively.

Case 1: If ℓ1 ≥ ℓ2, Fig.  1(a) illustrates that the trajectory of ε(t)
from ε(TS) to the origin involves two stages: (1) ε(TS) → ∂Ω2, and 
(2) ∂Ω2 → origin. Consequently, the settling time can be upper 
bounded by Tη ≤ Tℓ1 + Tℓ2 .

Case 2: If ℓ1 < ℓ2 and ε(TS) ∈ Ω2, Fig.  1(b) shows that the 
trajectory of ε(t) from ε(TS) to the origin consists of three stages: 
(1) ε(TS) → ∂Ω2, (2) ∂Ω2 → ∂Ω1, and (3) ∂Ω1 → origin. Not 
that V21(ε(t)) < ℓ2 for ε(t) ̸∈ Ω2 and V22 ≤ V̄22 ≜

M(c̄1+µ)2

4 . Then, 
via (42), the time interval of ε(t) from ∂Ω2 to enter Ω1 can be 
upper bounded by T∆ ≤

ℓ2+V̄22
φ

. In this case, the settling time can 
be upper bounded by Tη ≤ Tℓ2 + T∆ + Tℓ1 .

Case 3: If ℓ1 < ℓ2 and ε(TS) ̸∈ Ω1∪Ω2, Fig.  1(c) shows that the 
trajectory of ε(t) from ε(TS) to the origin includes two stages: (1) 
ε(TS) → ∂Ω1, and (2) ∂Ω1 → origin. Then, the settling time can 
be upper bounded by Tη ≤ T∆ + Tℓ1 , where T∆ is given in Case 2.

In summary, based on the results obtained under two condi-
tions, system (20) is fixed-time stable with Tη being the settling 
time. Given that ε(t) = (Lf ⊗ In0 )η(t) and Lf  is nonsingular, it 
follows that limt→Tη (ηi(t) − x0(t)) = 0 and ηi(t) − x0(t) = 0 for 
t ≥ Tη . This indicates the fixed-time convergence of η(t).

Thus, the proof is completed. □

3.2. Adaptive fixed-time solution to the regulator equations

Our control strategy relies on solving the regulator Eqs. (5). 
Since only a subset of the followers has access to the knowledge 
of matrices S and F , the solution to this equation cannot be pre-
computed for each follower. We propose to use S (t) and F (t) in 
i i
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(7) to adaptively calculate the solution of the regulator equations 
in fixed time. In this case, inspired by Lemma 3 of Cai et al. (2017), 
the following lemma presents a method to calculate the solution 
to the regulator equations in fixed time. 

Lemma 2.  Under Assumption  3, for any initial state ς̂i(0), the 
following equation,
̇̂ςi(t) = − κσ̂⊤

i (t)signϕ1 (σ̂i(t)ς̂i(t) − b̂i(t))

− κσ̂⊤

i (t)signϕ2 (σ̂i(t)ς̂i(t) − b̂i(t)), (44)

with σ̂i(t) = S⊤

i (t) ⊗

[
Ini 0
0 0

]
− In0 ⊗

[
Ai Bi
Ci 0

]
, ς̂i(t) =

vec
([

X̂i(t)
Ûi(t)

])
, b̂i(t) = vec

([
0

−Fi(t)

])
, κ > 0, 0 < ϕ1 < 1, 

and ϕ2 > 1, has a unique bounded solution ς̂i(t) such that ς̂i(t) →

ςi ≜ vec
([

Xi
Ui

])
 in a fixed time Tς . Additionally, let 

[
X̂i(t)
Ûi(t)

]
=

Mn0
ni+mi

(ς̂i(t)), where i = 1, . . . ,M, X̂i(t) ∈ Rni×n0 , Ûi(t) ∈ Rmi×n0 . 
It then holds that X̂i(t) → Xi, Ûi(t) → Ui within the same fixed time 
Tς .

Proof.  See Appendix  B. □

3.3. Fixed-time FTC protocols

With the distributed fixed-time observer in (7) and the adap-
tive solution to the regulator equation in (44), we proceed to 
develop fixed-time FTC protocols in this part.

For each follower, the following fixed-time FTC protocol is 
proposed, 

ui(t) = Ûi(t)ηi(t) + Uhihi(t) + zi(t), i ∈ Vf , (45)

where Ûi and Uhi are the solutions of Eq.  (44) and Eq.  (5), respec-
tively, zi(t) will be determined later.

Note that only those followers in direct communication with 
the leader have access to x0(t). For other followers, the fixed-time 
FTC component zi(t) should be designed based on the estimated 
state ηi(t). Let êi = xi − X̂iηi − Xhihi. Given that (Ai, Bi) is 
controllable and rank(Bi) = mi, it follows from Lemma  6 given in 
Appendix  A that there exists a linear coordinate transformation 
ζ̂i = Piêi =

[
ζ̂i1,1, . . . , ζ̂i1,ρ1 , . . . , ζ̂imi,1, . . . , ζ̂imi,ρmi

]⊤

, where ρj, 
j = 1, . . . ,mi, represents the controllability index of ζ̂ij.

Then, zi(t) is proposed as follows: 

zi = M−1
i (ωi − Giêi), (46)

where ωi =
[
ωi1, . . . , ωij, . . . , ωimi

]⊤ with ωij =

−
∑ρj

h=1

(
kij,hsignpij,h (ζ̂ij,h) + k̄ij,hsignqij,h (ζ̂ij,h)

)
, Gi and invertible 

matrix Mi can be designed as in Lemma  6, the positive constants 
kij,h, k̄ij,h, pij,h, and qij,h, j = 1, . . . ,mi, h = 1, . . . , ρj, can be given 
as in Lemma  7 in Appendix  A.

We are now prepared to present the main result of this sub-
section.

Theorem 2.  Consider the heterogeneous MAS (1) and (2) under 
Assumptions  1–4. The distributed fixed-time FTC problem under 
consideration is solved by the distributed control protocol consisting 
of (7), (44), (45), and (46).

Proof.  The proof comprises two parts. Firstly, we show that êi is 
bounded in [0, Tm), where Tm ≜ max{Tη, Tς }. Then, we establish 
that the formation tracking errors converge to zero in fixed time.
6

Part (i): Boundedness of êi in t ∈ [0, Tm).
Under Assumptions  3–4, from (1), (7), and (45), one has 

̇̂ei = Aiêi + Bizi +∆ei , (47)

where ∆ei ≜ Bi(Ũiηi + Ũix0 +Uiη̃i)+Ai(Xiη̃i + X̃ix0 + X̃iη̃i)− X̃iηi −

X̃iSx0 − X̃iε̃i − Xiε̃i, ε̃i ≜ ε̄i + S̃iηi + Sη̃i, Ũi = Ûi − Ui, X̃i = X̂i − Xi, 
and S̃i = Mn0

n0 (S̃0i).

Let ζ̂i = Piêi =

[
ζ̂i1,1, . . . , ζ̂i1,ρ1 , . . . , ζ̂imi,1, . . . ζ̂imi,ρmi

]⊤

 and 

∆̄ei = Pi∆ei =

[
∆̄i1,1, . . . , ∆̄i1,ρ1 , . . . , ∆̄imi,1, . . . , ∆̄imi,ρmi

]⊤

. 
Then, the dynamics of ζ̂ij, j = 1, . . . ,mi, has the following form, ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

̇̂
ζij,1 = ζ̂ij,2 + ∆̄ij,1,

̇̂
ζij,2 = ζ̂ij,3 + ∆̄ij,2,

...
̇̂
ζij,ρj =

∑ρj
h=1

(
kij,hsignpij,h (ζ̂ij,h) + k̄ij,hsignqij,h (ζ̂ij,h)

)
+ ∆̄ij,ρj .

(48)

It is established in Tian et al. (2018) that system (48) is 
bounded-input-bounded-state (BIBS) stable, provided that ∆̄ij =

[∆̄ij,1, . . . , ∆̄ij,ρj ]
⊤ is considered as an input. Via Theorem  1 and 

Lemma  2, one has ∆ei , and consequently ∆̄ij, j = 1, . . . ,mi, are 
bounded in [0, Tm). Then, one can derive that ζ̂i is bounded in 
[0, Tm). Since ζ̂i = Piêi and Pi is invertible, we can conclude that 
êi is bounded in [0, Tm).

Part (ii): Fixed-time convergence of êi.
When t ≥ Tm, one has ∆ei = 0. This implies that êi = ei ≜

xi − Xix0 − Xhihi.
From Lemma  7, it can be concluded that ∀j ∈ {1, . . . ,mi}, the 

system described by (48) is fixed-time stable, and the settling 
time is upper bounded by To ≤ Tm + Tη , where Tη is determined 
based on Lemma  7. Since ζi(t) = Piei(t), with Pi being invertible, 
and eyi(t) = Ciei(t) = yi(t) − hoi(t) − y0(t), it follows that 
limt→To eyi(t) = 0 and eyi(t) = 0 for t ≥ To, i.e., the fixed-
time FTC problem under consideration is solved. Thus, the proof 
is completed. □

Remark 3.  It is noted that the right-hand sides of Eqs. (7), 
(44), and (45) exhibit discontinuous at zeros. Consequently, the 
solutions to these equations are defined in the sense of Filippov 
(2013).

Remark 4.  It can be observed from Theorem  2 that the formation 
tracking errors under the proposed control strategy converge to 
zero in fixed time with the upper bound of the settling time 
independent of the initial conditions of the system. However, it 
should be pointed out that the upper bound, though explicitly 
given, cannot be calculated due to its dependence on the adaptive 
gain which is adopted to avoid the global graph information and 
is unknown. Since the upper bound is explicitly given, even if 
it cannot be determined a priori, it is still possible to adjust 
certain design parameters to tune this upper bound. Moreover, 
it is important to note that the parameter dmax is only used in 
estimating the upper bound of the settling time, which means 
that the design and implementation of our proposed fixed-time 
control protocol do not rely on any global information.

Remark 5.  In practical applications, not only the process of 
discretization but also other factors, such as system uncertainties 
and external disturbances, often make it infeasible for the system 
to achieve zero tracking error eventually. Thus, reducing tracking 
errors to a negligible level is usually sufficient in practice. In this 
case, our fixed-time method remains effective when applied in a 
discrete manner.
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Remark 6.  Compared with existing finite-time results (Cai et al., 
2020; Fu & Wang, 2016; Wang et al., 2024, 2020, 2021; Xiao 
et al., 2009), the upper bound of the settling time in this paper 
is irrelevant to the initial conditions of the system. Moreover, 
by using the coordinate transformation method, the fixed-time 
controller is developed without the restrictive assumption on the 
full-row rank of the input matrix of the follower in Cai et al. 
(2022), Jiang et al. (2023), Zhang et al. (2021). Consequently, 
the potential application scope of this control protocol is sig-
nificantly expanded. However, the proposed fixed-time control 
approach may require larger control inputs compared to those 
finite-time methods (Cai et al., 2020; Fu & Wang, 2016; Wang 
et al., 2024, 2020, 2021; Xiao et al., 2009), posing challenges for 
energy-limited tasks.

4. Simulation

Consider four practical cart-pendulums borrowed from Doyle 
et al. (2013) as followers of the following form,

ẋi =

⎛⎜⎜⎝
0 1 0 0
0 0 −

mig
Mi

0
0 0 0 1
0 0 (Mi+mi)g

Mi li
0

⎞⎟⎟⎠ xi +

⎛⎜⎜⎝
0 0
1
Mi

0
0 0

−
1

liMi
1

limi

⎞⎟⎟⎠ ui

yi =

(
1 0 0 0
0 0 1 0

)
xi,

where xi = (pi ṗi ψi ψ̇i)⊤, ui = (fi di)⊤, yi = (pi ψi)⊤, pi is 
the linear position of the cart i, ψi is the angle of pendulum i
with respect to the vertical line, fi is the horizontal force input 
to cart i, di is the perpendicular force input to pendulum i at 
the end, Mi and mi are the masses of cart i and pendulum i, 
respectively, li is the length of pendulum i, and g represents the 
gravity constant with value of 9.8. The parameters {Mi,mi, li}, i =

1, 2, 3, 4, are chosen as {1, 0.05, 60}, {1.1, 0.08, 61}, {1, 0.2, 61}, 
and {1.1, 0.3, 60}, respectively.

The system matrices of the leader are set as follows,

S =

( 0 1 0
−1 0 0
0 0 0

)
, F =

(
1 0 0
0 1 0

)
.

The time-varying formation vector is chosen as hi(t) =(
5 sin

(
t +

(i−1)π
2

)
5 cos

(
t +

(i−1)π
2

))⊤
, i = 1, 2, 3, 4, and hoi(t)

=
(
5 sin

(
t +

(i−1)π
2

)
0
)⊤

. Solving the Eqs. (5) and (6) respec-
tively yields

Xi =

⎛⎜⎝ 1 0 0
0 1 0
0 1 0

−1 0 0

⎞⎟⎠ ,Ui =

(
−Mi gmi 0

−mi mili +
gmi li−gmi(Mi+mi)

Mi
0

)
,

Xhi =

(
1 0 0 0
0 1 0 0

)⊤

,Uhi =

(
−Mi 0
−mi 0

)
.

The communication graph is given in Fig.  2. The parameters 
in the distributed fixed-time observer (7), adaptive regulator 
Eq. (44), and FTC protocol (46) are set as follows: c2 = c4 =

c6 = κ = 5, c3 = c5 = c7 = 6, α1 = β1 = γ1 = ϕ1 = 7/9, 
α2 = β2 = γ2 = ϕ2 = 907/700, and Mi = I2, i = 1, 2, 3, 4. Let the 
initial conditions xi(0), x0(0), Ŝ0i(0), F̂0i(0), and ς̂i(0) are randomly 
generated within the range of −5 to 5. The other initial states are 
selected as ηi(0) = 03, c1i(0) = 1.

The simulation results with one particular initial condition are 
presented in Figs.  3 and 4. The state observer errors between 
the distributed adaptive fixed-time observers and the leader are 
shown in Fig.  3(a). The adaptive gains of the observer are pre-
sented in Fig.  3(b), illustrating the convergence of all adaptive 
7

Fig. 2. Communication graph.

Fig. 3.  (a) The observer errors. (b) The adaptive observer gains.

Fig. 4. (a) The formation tracking errors with the adaptive fixed-time controller. 
(b) The formation tracking errors with the adaptive finite-time controller.

parameters to certain positive constants. The output formation 
tracking errors are shown in Fig.  4(a). It is noted that the forma-
tion tracking errors converge to the error tolerance threshold of 
10−2 within 8.8s.

For comparison, Fig.  4(b) shows the formation tracking errors 
using a finite-time controller derived by modifying our proposed 
control protocol to exclude the power index larger than one. 
Notably, the initial conditions remain the same. The compari-
son between Figs.  4(a) and 4(b) highlights that the fixed-time 
controller ensures a faster error convergence than its finite-time 
counterpart.

5. Conclusion

This paper addresses the problem of distributed adaptive 
fixed-time FTC for heterogeneous MASs. By developing a dis-
tributed adaptive fixed-time observer and adaptive fixed-time 
solution of the regulator equations, a fully distributed fixed-
time FTC protocol has been proposed for each follower without 
requiring the restrictive full-row rank assumption. The proposed 
fixed-time control strategy successfully solves the FTC problem 
in a fully distributed manner, eliminating the need for global 
information. Simulations with comparisons have been conducted 
to validate the effectiveness of the proposed control protocol. 
Future research work can be focused on improving the proposed 
distributed adaptive fixed-time FTC method to eliminate the need 
for global information to estimate the upper bound of the settling 
time. Moreover, it is interesting to investigate the fixed-time 
sampled-data FTC problem for heterogeneous MASs.

Appendix A

Several key lemmas, which are utilized in the proof of the 
main results of this work, are introduced in this appendix.
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Lemma 3 (Hardy et al., 1952). For any ξi ∈ R, i = 1, 2, . . . , n, if 
p ∈ (0, 1] and q > 1, the inequalities 

(∑n
i=1 |ξi|

)p
≤
∑n

i=1 |ξi|
p

≤

n1−p
(∑n

i=1 |ξi|
)p and ∑n

i=1 |ξi|
q

≤
(∑n

i=1 |ξi|
)q

≤ nq−1∑n
i=1 |ξi|

q

hold.

Lemma 4 (Polyakov, 2011). Given the system ẋ = f (x, t), where 
f : Rn

× [0,∞) → Rn is a continuous vector function satisfying 
f (0, t) = 0. Suppose there exists a continuous, positive definite 
function g(x) : Rn

→ R such that ġ(x) ≤ −κc(g(x))c − kd(g(x))d
for all x ∈ Rn, where κc > 0, κd > 0, 0 < c < 1, and d > 1. The 
system is fixed-time stable, with an upper bound on the settling time 
T ≤

1
c0(1−c) +

1
d0(d−1) .

Lemma 5 (Qian & Lin, 2001). For x ∈ R and y ∈ R, if a1 > 0 and 
a2 > 0, |x|a1 |y|a2 ≤

a1|x|a1+a2
a1+a2

+
a2|x|a1+a2

a1+a2
.

Lemma 6 (Luenberger, 1967). Consider a linear system 
ẋ(t) = Ax(t) + Bu(t), (49)

where x ∈ Rn, u ∈ Rm, A and B are the system matrices.
If (A, B) is controllable and the rankB = m, there exists a 

linear coordinate transformation ζ (t) = Qx(t) ∈ Rn such that 
ζ (t) =

[
ζ⊤

1 (t), . . . , ζ⊤
m (t)

]⊤. Let ρi, i = 1, . . . ,m, denote the 
controllability index of ζ (t). Then, ζ (t) can be expressed as ζ (t) =[
ζ1,1(t), . . . , ζ1,ρ1 (t), . . . , ζm,1(t), . . . , ζm,ρm (t)

]⊤ and the dynamics 
of ζi(t), i = 1, . . . ,m, are given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ζ̇i,1(t) = ζi,2(t),
ζ̇i,2(t) = ζi,3(t),
...

ζ̇i,ρi (t) = q⊤

i A
ρix(t) + q⊤

i A
ρi−1Bu(t),

where q⊤

i = i⊤giQ , ik ∈ Rn is a vector with the kth element set to 
1 and all the other elements set to 0, and gi =

∑i−1
k=0(1 + ρk) with 

ρ0 = 0.
Furthermore, defining ζ ρ(t) =

[
ζ1,ρ1 (t), . . . , ζm,ρm (t)

]⊤
∈ Rm, 

the dynamics can be described by, 
ζ̇ ρ(t) = Gx(t) + Mu(t), (50)

where G =

⎛⎜⎝q⊤

1 A
ρ1

...

q⊤
mA

ρm

⎞⎟⎠, and M =

⎛⎜⎝q⊤

1 A
ρ1−1B
...

q⊤
mA

ρm−1B

⎞⎟⎠ with M being 

invertible.

Lemma 7 (Basin et al., 2016). Consider the system, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1(t) = x2(t)
ẋ2(t) = x3(t)
...

ẋn(t) = u(t)

(51)

where x(t) = [x1(t), . . . , xn(t)]⊤ and u(t) represent the state and 
control input, respectively.

The fixed-time stabilization control input is given by: 

u = −

n∑
i=1

(
cisignκi (xi) + c̄isignκ̄i (xi)

)
, (52)

where ci and c̄i, i = 1, . . . , n, are the positive constants of the 
polynomials sn+cnsn−1

+· · ·+c2s+c1 and sn+c̄nsn−1
+· · ·+c̄2s+c̄1

which are required to be Hurwitz. The constants κi and κ̄i, i =

1, 2, . . . , n, are chosen such that:

κj−1 =
κjκj+1

, κ̄j−1 =
κ̄jκ̄j+1

,

2κj+1 − κj 2κ̄j+1 − κ̄j

8

with j = 2, . . . , n, κn+1 = κ̄n+1 = 1, κn = κ ∈ (1 − ϵ, 1), and 
κ̄n = κ̄ ∈ (1, 1 + ϵ̄), where ϵ, ϵ̄ > 0 are sufficiently small.

Then, the settling time is bounded by: 

T ≤
pλmax(P1)

(1 − p)λmin(Q1)
λ

1−p
p

max (P1) +
qλmax(P2)

(q − 1)λmin(Q2)
λ

q−1
q

max (P2), (53)

where Pi, i = 1, 2, are real symmetric positive definite matrices that 
satisfy the Lyapunov equation PiAi + A⊤

i Pi = −Qi, with Qi being an 
arbitrary positive definite matrix. The matrices Ai, i = 1, 2, have the 
following forms:

A1 =

⎛⎜⎜⎜⎝
0 1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 1
−κ1 −κ2 · · · −κn

⎞⎟⎟⎟⎠ , A2 =

⎛⎜⎜⎜⎝
0 1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 1
−κ̄1 −κ̄2 · · · −κ̄n

⎞⎟⎟⎟⎠ .
Appendix B. Proof of Lemma  2

The proof of Lemma  2 is structured in two parts. Firstly, we 
demonstrate that ς̂i(t) remains bounded before the convergence 
of S̃0i(t) and F̃0i(t), i.e., ς̂i(t) remains bounded over the interval 
[0, TSF ), where TSF = max{TS, TF }. Then, we establish that ς̂i(t) →

ςi in fixed time.
Part (i): Show that ς̂i(t) is bounded in [0, TSF ).
Define the Lyapunov function candidate as V3 = ς̂⊤

i ς̂i. The 
time derivative of V3 along the trajectory of (44) is obtained as
V̇3 = −2κ∥ŷi∥

1+ϕ1
1+ϕ1

−2κ∥ŷi∥
1+ϕ2
1+ϕ2

−2κ b̂⊤

i sign
ϕ1 (ŷi)−2κ b̂⊤

i sign
ϕ2 (ŷi)

≤ − 2κ∥ŷi∥
1+ϕ1
1+ϕ1

− 2κ∥ŷi∥
1+ϕ2
1+ϕ2

+ 2κ
(ni+p)n0∑

j=1

|b̂ij∥ŷij|
ϕ1

+ 2κ
(ni+p)n0∑

j=1

|b̂ij(t)∥ŷij(t)|
ϕ2
, (54)

where ŷi = σ̂iς̂i − b̂i =
[
ŷi1, . . . , ŷi(ni+p)n0

]⊤ and

b̂i =

[
b̂i1, . . . , b̂i(ni+p)n0

]⊤

.

Via Lemma  5 in Appendix  A, one has 
∑(ni+p)n0

j=1 |b̂ij∥ŷij|
ϕ1

≤∑(ni+p)n0
j=1

|b̂ij|
1+ϕ1

ϕ1+1 +
ϕ1
ϕ1+1∥ŷi∥

1+ϕ1
1+ϕ1

 and 
∑(ni+p)n0

j=1 |b̂ij∥ŷij|
ϕ2

≤∑(ni+p)n0
j=1

|b̂ij|
1+ϕ2

ϕ2+1 +
ϕ2
ϕ2+1∥ŷi∥

1+ϕ2
1+ϕ2

. It then follows from (54) that 

V̇3 ≤ −k1∥ŷi∥
1+ϕ1
1+ϕ1

− k2∥ŷi∥
1+ϕ2
1+ϕ2

+ ϱ̂i, (55)

where k1 = 2κ(1 −
ϕ1
ϕ1+1 ) > 0, k2 = 2κ(1 −

ϕ2
ϕ2+1 ) > 0, and 

ϱ̂i =
∑(ni+p)n0

j=1

(
|b̂ij|

1+ϕ1

ϕ1+1 +
|b̂ij|

1+ϕ2

ϕ2+1

)
. Since 0 <

1+ϕ1
2 < 1 and 

1+ϕ2
2 > 1, via Lemma  3, one has ∥ŷi∥1+ϕ1

1+ϕ1
≥ (∥ŷi∥2)

1+ϕ1
2  and 

∥ŷi∥
1+ϕ2
1+ϕ2

≥ ((ni + p)n0)
1−ϕ2

2 (∥ŷi∥2)
1+ϕ2

2 . Noting that 1+ϕ12 ≤ 1 ≤

1+ϕ2
2 , one can derive that ∥ŷi∥2

≤ (∥ŷi∥2)
1+ϕ1

2 + (∥ŷi∥2)
1+ϕ2

2 . Then, 
one has 

V̇3 ≤ −ky
(
(∥ŷi∥2)

1+ϕ1
2 + (∥ŷi∥2)

1+ϕ2
2

)
+ ϱ̂i, (56)

where ky = min{k1, k2((ni + p)n0)
1−ϕ2

2 } > 0.
Via Theorem  1, one has σ̂i and b̂i are bounded in [0, TSF ). We 

can find positive constants ϱ̄, kσ , and kb satisfying ϱ̂i ≤ ϱ̄ and 
∥ŷi∥2

= ∥σ̂iQiς̄i − b̂i∥2
≤ kσ∥ς̄i∥2

+ kb within this interval. Then, 
it follows that 
V̇3 ≤ kykσV3 + kykb + ϱ̄, (57)

which implies that V3, and consequently ς̄i(t) and ς̂i(t), are 
bounded in [0, T ).
SF
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Part (ii): Show that ς̂i(t) → ςi in fixed time.

When t ≥ TSF , one has σ̂i(t) = σi ≜ S⊤

i ⊗

[
Ini 0
0 0

]
−

I ⊗

[
Ai Bi
Ci 0

]
 and b̂i(t) = bi ≜ vec

([
0

−Fi

])
. Following the 

result in Cai et al. (2017), there exists an orthogonal matrix 
Qi ∈ R(n0(ni+mi))×(n0(ni+mi)) such that σiQi = [σ̄i 0], where σ̄i ∈

Rn0(ni+mi)×ri  with rank(σ̄i) = ri. Moreover, one can also find a 
unique constant vector ςi1 ∈ Rri  such that σ̄iςi1 = bi.

Let ς̄i =Q⊤

i ς̂i =[ς̄⊤

i1 ς̄
⊤

i2 ]
⊤, where ς̄i1 ∈Rri  and ς̄2 ∈ Rn0(ni+mi)−r . 

When t ≥ TSF , the system (44) can be decomposed into:
̇̄ςi1 = −κσ̄⊤

i signϕ1 (σ̄iς̄i1 − bi) − κσ̄⊤

i signϕ2 (σ̄iς̄i1 − bi),
̇̄ςi2 = 0. (58)

It can be concluded from (58) that there is a constant vector 
ςi2 ∈Rn0(ni+mi)−r  such that ς̄i2(t) → ςi2 in the fixed time TSF .

Let ς̃i1(t)= ς̄i1(t)−ςi1. Noting that σ̄iςi1 =bi, via (58), one has 
̇̃ςi1 = −κσ̄⊤

i signϕ1 (σ̄iς̃i1) − κσ̄⊤

i signϕ2 (σ̄iς̃i1). (59)

Consider the Lyapunov function candidate V4 = ς̃⊤

i1 ς̃i1. Letting 
ỹi = σ̄iς̃i1, the time derivative of V4 along the trajectory of (59) is 
given by 

V̇4 = −2κ∥ỹi∥
1+ϕ1
1+ϕ1

− 2κ∥ỹi∥
1+ϕ2
1+ϕ2

. (60)

Note that 0 < ϕ1 < 1 and ϕ2 > 1. Via Lemma  3, one has 
∥ỹi∥

1+ϕ1
1+ϕ1

≥ (∥ỹi∥2)
1+ϕ1

2  and ∥ỹi∥1+ϕ2
1+ϕ2

≥ ((ni+p)n0)
1−ϕ2

2 (∥ỹi∥2)
1+ϕ2

2 . 
Since σ̄⊤

i σ̄i is positive definite, it follows that ∥ỹi∥2
= ς̃⊤

i1 σ̄
⊤

i σ̄iς
⊤

i1
≥ΛminV4, where Λmin =λmin(σ̄⊤

i σ̄i). Then, one has 

V̇4 ≤ −k3V
1+ϕ1

2
4 − k4V

1+ϕ2
2

4 , (61)

where k3 = 2κ(Λmin)
1+ϕ1

2  and k4 = 2κ(Λmin)
1+ϕ2

2 ((ni +p)n0)
1−ϕ2

2 . 
Via Lemma  4, it can be obtained from (61) that ς̄i1(t) → ςi1
in a fixed time and the settling time can be estimated by Tς ≤

TSF +
2

k3(1−ϕ1)
+

2
k4(1−ϕ2)

.
Since ς̄i(t) = Q⊤

i ς̂i(t) = [ς̄⊤

i1 ς̄
⊤

i2 ]
⊤ and Qi is invertible, it then 

follows that ς̂i(t) → ςi in a fixed time Tς , where ςi is a solution 
to σiςi = bi. According to Theorem 1.9 in Huang (2004), regulator 
Eqs. (5) can be reformulated as σςi = bi. Thus, the adaptive 
regulator equations in (44) has a unique bounded solution ς̂i(t)
such that ς̂i(t) → ςi, X̂i(t) → Xi, and Ûi(t) → Ui in a fixed time 
Tς . The proof is thus completed. □
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