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ABSTRACT

This article investigates the problem of fixed-time time-varying formation tracking control (FTC)
for heterogeneous linear multiagent systems (MASs) under the directed communication graph. It is
assumed that the Laplacian matrix associated with the communication graph is unavailable and that
the system matrices of the leader are only available to its neighboring followers. This differs from many
existing works on fixed-time FTC problems where the communication graphs are typically undirected
and protocol designs often rely on certain global information. A novel distributed observer is first put
forward to estimate both the state and system matrices of the leader in fixed time. Then, an adaptive
scheme is developed to solve the time-varying regulator equations resulting from the estimated leader
system matrices in fixed time. Based on the proposed observer and the adaptive solutions to the
regulator equations, a distributed adaptive fixed-time FTC protocol is further proposed via coordinate
transformation techniques. It is shown that our proposed controllers do not require the input matrices
of the followers to be of full row rank. It is also shown that the concerned fixed-time FTC problem
can be solved with the proposed fixed-time FTC strategy in a distributed manner. Our results can be
directly applied to solve both the adaptive fixed-time cooperative output regulation problem and the
leader-following consensus problems of MASs under the directed graph. Finally, the effectiveness of

the proposed fixed-time FTC strategy is demonstrated through a numerical example.
© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and

similar technologies.

1. Introduction

Cooperative control of multi-agent systems (MASs) has at-
tracted considerable attention over the recent decades from a
variety of fields, such as robotics, sensor networks, and power
systems (Cai et al., 2017; Fang & Wen, 2025; Fax & Murray, 2004;
Firouzbahrami & Nobakhti, 2022; He et al., 2025, 2024; Lin et al.,
2022; Olfati-Saber & Murray, 2004; Sun et al.,, 2021; Wieland
et al,, 2011). A prominent research topic of cooperative control
is formation control, which aims to establish control protocols to
achieve a specific formation (Huang et al., 2024; Liu & Li, 2024;
Ren, 2007; Yang et al., 2023). In addition to simply forming a for-
mation, in many real-world applications, MASs are also required
to follow a trajectory provided by a leader. This requirement gives
rise to the so-called formation tracking control (FTC) problem.
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Various FTC strategies have been developed for different types
of MASs, including first or second-order agent dynamics, general
homogeneous agent dynamics, and general heterogeneous agent
dynamics (Feng et al., 2024; Li et al., 2024; Liu et al., 2022; Porfiri
et al.,, 2007).

Most of the above-mentioned results on cooperative control
of MASs focus on guaranteeing either asymptotic or exponential
stability of the closed-loop systems. However, in many practical
applications, it is often necessary or desirable to achieve those
objectives in a finite time. Known for its fast convergence, high
precision, and strong robustness, finite-time control has attracted
significant attention and numerous notable results have been
recently reported, see, for example, Cai et al. (2020), Fu and Wang
(2016), Wang et al. (2024, 2020, 2021), Xiao et al. (2009). Unfor-
tunately, one notable limitation of finite-time control is that the
upper bound of the settling time depends on the initial conditions
of the concerned MASs. To address this issue, a fixed-time control
protocol, whose upper bound of the settling time does not depend
on the initial conditions, was first proposed in Polyakov (2011).
Since then, extensive research has been conducted on cooperative
control of MASs with fixed-time convergence (Cheng et al., 2022;
Dong & Chen, 2022; Du et al., 2020; Zuo et al., 2017).

It is worth noting that while the distributed control proto-
cols of MASs in the above-mentioned literature use only local
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information from neighboring agents to achieve fixed-time co-
operative control, their protocol designs often rely on certain
global information of MASs, for instance, the eigenvalues of the
matrices associated with the communication graphs, or the sys-
tem matrices of the exosystem. To address these issues, adaptive
techniques have been adopted for distributed fixed-time control
protocols, see, e.g., Cai et al. (2022), Jiang et al. (2023), Zhang
et al. (2021), Zuo et al. (2023). However, the adaptive fixed-time
control protocols in Jiang et al. (2023), Zhang et al. (2021), Zuo
et al. (2023) depend on the assumption that the communication
graphs are either undirected or strongly connected. Moreover, the
designs of those protocols in Cai et al. (2022), Jiang et al. (2023),
Zhang et al. (2021) require a restrictive assumption, that is, the
input matrices of the followers are of full-row rank, which might
not be satisfied in many engineering applications. In addition, it
was not shown in those works that the solutions to the regulator
equations can be obtained within a fixed time. To the best of
our knowledge, the problem of fixed-time FTC for heterogeneous
MASs under the directed communication graph, which does not
require the global information associated with the graph nor the
system matrices of the leader, is yet to be addressed, thereby
motivating this work.

This work investigates the problem of fully distributed adap-
tive fixed-time FTC for heterogeneous MASs under the directed
graph. The main contributions of this work are summarized as
follows. First, a novel distributed adaptive fixed-time observer
is proposed under the directed communication graph to esti-
mate the state and the system matrices of the leader without
requiring any global information. This contrasts with the fixed-
time observers presented in previous studies (Cheng et al., 2022;
Dong & Chen, 2022; Du et al., 2020; Zuo et al., 2017), which are
not fully distributed. Moreover, the asymmetry of the Laplacian
matrix in the directed graph presents additional challenges for
both fully distributed observer design and stability analysis com-
pared to their counterparts in undirected or strongly connected
graphs (Jiang et al., 2023; Zhang et al., 2021; Zuo et al., 2023). Sec-
ond, compared to the approaches in Cai et al. (2022), Jiang et al.
(2023), Zhang et al. (2021), where the solutions to the regulator
equations can only be obtained when time goes to infinity, a novel
adaptive scheme is developed to solve the regulator equations in
fixed time, and also in a fully distributed manner.

Notation: I, represent the n-dimensional identity matrix. 0
denotes the zero matrix, and its dimension can be known from
the context. The Kronecker product is denoted as ®. Let diag{a;,

., 4y} be the diagonal matrix with a;, i = 1,...,n, as its
diagonal entries. || - || and || - ||, denote the Euclidean norm and p-
norm for vectors, respectively. For a vector X = [x;,...,x,]" €
R", define sign®(x) = [sign(x1)|x1]%, ..., sign(x,)|x,|*]", where
o > 0 and sign(-) is the sign function. Let min(-) and max(-) be
the minimum and maximum element of an array, respectively.
Consider a matrix A = [a;,...,aq] € RP*9, where q; € RPX1,
i = 1,...,q. Define Ay = vec(A) = [aI,...,aqT]T, and let
A= MZ(AVEC) represent the transformation between the matrix
A and the corresponding column vector Ayec.

2. Preliminaries and problem formulation
2.1. Algebraic graph theory

Considers a heterogeneous MAS consisting of M followers and
one leader. An agent is classified as a leader if it has no neighbors;
otherwise, it is defined as a follower. The digraph among the
followers is defined as Gy = (V, &, Ay), which consists of Vy =
{1,...,M}, & < Vr x V;, and the adjacency matrix A =
[aj],,. ., With @; > 0 & (j.i) € & and a; = O otherwise. Let
ajp be the pinning gain from the leader to the ith follower. In
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particular, a;p > 0 if information transmission between them is
feasible; otherwise, ajgy = 0. Let G = (V, &, A) be the directed
communication topology among the followers and the leader. A
spanning tree is a directed graph where at least one root node is
connected by a directed path to every other node.

2.2. Problem formulation

The dynamics of the ith follower are described by
X (t) =Axi(t) + Biui(t),
yi(6) =Cx; (£) , i€V, (M

where x; € R", u; € R™, y; € RP represent the state, control
input, and output of the ith follower, respectively, A;, B;, and G
are the system matrices satisfying rank(B;) = m.

The dynamics of the leader indexed by 0 are given as

Xo(t) =Sxo(t),
Yo(t) =Fxo(t), (2)

where xo € R™ and yo € RP represent the state and output of the
leader, respectively, S and F are system matrices of the leader.

The piecewise continuous differentiable formation vector
hi(t) € RP of the ith follower is generated by the following
system,

hi(t) =Suhi(t),
hoi(t) :thi(t)s ie st (3)

where h; € R, S, and F;, are matrices of compatible dimensions.
Then, the fixed-time FTC problem under consideration is de-
fined as follows.

Definition 1 (Fixed-time FIC problem). Given the heterogeneous
MAS consisting of (1) and (2) under the directed graph G, design
a distributed control protocol for each follower such that

Him (yi(f) — hoi(€) — yo(t)) =0,

Yi(t) = hoi(t) = yo(t) = 0, t = To, Vi€ Vy, (4)

where T, > 0 represents the settling time that is independent of
the initial conditions.

This paper aims to design a fully distributed fixed-time control
protocol so that the fixed-time FTC problem can be solved in a
fully distributed manner without global information, such as the
eigenvalues of the matrices associated with the communication
graphs, or the system matrices of the leader.

Remark 1. The formation vector hy;(t), generated by Eq. (3), spec-
ifies the desired relative offset of y;(t) relative to yo(t). Various
formation shapes can be generated using Eq. (3). For instance,
setting S, = 0 allows (3) to specify a non-rotating time-invariant
formation shape. Additionally, a three-dimensional circular for-
mation, as discussed in Li et al. (2024), Wang et al. (2024), can be

(]) and F, = (1 0) for the X, Y,

and Z axes, respectively, where ¢ denotes a positive constant.

formed by setting S, = _Ocz

Before presenting the main results, the following assumptions
and lemma are put forward.

Assumption 1. The digraph G contains a spanning tree with the
leader as its root node.

Then, the corresponding Laplacian matrix £ can be partitioned
Ly L
0 oFf

for i #j, and Iy = Y}, aix + Gio.

as where £; = [—doilyx1, £r =[]y, With lj = —ay
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Lemma 1 (Qu, 2009). Under Assumption 1, all eigenvalues of Ly
have positive real parts. Moreover, there exists a real diagonal matrix
D such that @ = DLy + L D > 0.

Define D = diag{ds, ..., dy} = )\z—ﬁ, where Apin > 0 be the

smallest eigenvalue of 9, d; > 0, i :ml, ..., M. Then, by Lemma
1, one has Q = DLy + LfTD > 2ly.

Assumption 2. For any i € Vy, (A;, B;) are controllable.

Assumption 3. The regulator equations,
XiS =AX; + BiU;, (5a)
0 =GX; — F, (5b)

have solution pairs (X;, U;) for all i € Vy.

Assumption 4. The linear matrix equations,
XniSh =AiXni + BiUhi, (6a)
0 =CiXpi — Fp, (6b)

have solution pairs (Xp;, Up;) for all i € Vy.

Remark 2. Assumptions 1-4 are necessary for achieving the FTC
for heterogeneous MASs as in Cai et al. (2022), Cheng et al. (2023).
The solvability of Egs. (5) can be referred to Huang (2004).

3. Main results

In this section, fully distributed fixed-time observers, the adap-
tive scheme to solve the regulator equations, and distributed
fixed-time control protocols will be provided to address the
fixed-time FTC problem for the concerned MAS.

3.1. Distributed adaptive fixed-time observers
To estimate the state and the system matrix of the leader, a

fixed-time distributed observer is first proposed for each follower
as follows:

i =S — (c1i + &' ei)e; — cosign™(e;) — c3sign®2(e;), (7a)
¢ =¢; i, (7b)
Soi = — casign®(Sp;) — cssign??(Sp:), (7¢)
Foi = — cesign” (Foi) — c7sign”2(Fy), (7d)
where ¢; = Z]Ai] ai(ni— nj)+ ao(ni—xo), Soi = Zj 1 a,](So, - 501)

+aio(Soi — So), Foi = ZJ[Z] ajj(Fo; — Foj) + ajo(Foi — Fo), n; represents
the state of the distributed observer used to estimate xg, So =
vec(S), Fo = vec(F), Soi, Foi, and &; denote the neighboring relative
estimation errors for So, Fo, and xo, respectively, §oi € R" and
Fo;i € RP™ are the estimates of the vector Sy and Fy respectively
via follower i, S; = Myd(Soi), Fi = M°(Foi), cy; is the adaptive
updating gain satisfying ¢1;(0) > 0, ¢j,j = 2, ..., 6, a1, a2, B1, P2,
y1, and y, are positive constants to be determined later.
The following theorem shows that the observer errors Sp; £

§0,‘ — So, IE(),' 4 ﬁo,‘ — Fy, and 7; £ n; (t) — xo(t) are fixed-time
convergent.
Theorem 1. Consider the leader (2) and the distributed observers

(7a)-(7d). Select ¢; > 0,i =2, ...,
0<,31<1,,82>%>1,0<y1 <],andy2>y1—1>1.Then,f0r
all i € Vy, the following properties hold:

6,0<a1<1,a2>i>1,

1. lim,_ 7, Soi(t) = 0 and Sei(t) = 0, t > T,
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2. lim,_ 7, Foi(t) = 0 and Foi(t) = 0, t > T,
3. lim 7, 7i(t) = 0 and 7i(t) =0, ¢t > T,,

where Ts > 0, Tr > 0, and T, > O represent the settling times
regardless of any initial conditions.

Proof. The proof of Theorem 1 includes three parts. Firstly, we
show the fixed-time convergence of Sy; and Fy;. Then, we establish
the boundedness of the observer error 7; in [0, Ts), ensuring that
no finite-time escape occurs. Lastly, we show that the observer
error 7j; converges to zero in fixed time.

Part (i): leed time convergence of Soi and Fy;.

Not that Sy £ Soi — So. Letting S = [S],, ..
follows from (7c) that

., Sgy1", it then

- (8)

where S = [501» .. SOT,V,]T with So; = casign® (So;) )+ cssign(Soy).

LetS_[m,.. ol NotlngthatS_(Lf(X)Iz)S by (8),
the dynamics of S can be given by
S=—(4® Ing)§. (9)
Consider the following Lyapunov function candidate,
M

C4d,’ -
W=ZG¢ﬁmmm

Mﬁﬁ- (10)
i=1

The time derivative of V; along the trajectory of the system (9)
is calculated as

1+ﬂ

. 1. o o
i =—287 ((ﬁfTD-i-Dﬁf) ® ln%> §= 1352 (11

Given that ¢4sign®1(So;) and c5sign®?(Se;) exhibit component-wise
sign consistency across all their respective elements, the terms
in the expansion of ||Sy;||?, including both square terms and cross
terms, are non-negative. Then, one has ||S||2 > Zl 1c4 |S(3,||2ﬂ1

Zl 1c5||So,||2 Since 0 < f; < 1and B, > 1, via Lemma

3 given in Appendlx A, one has 3" ||So,||§§: > (IS)? ) and
2 B

S 1Saill5E = W (IS11?)™. 1t then follows that

V= =k ((I512)" + (151%)) (12)

2
. C;
where k; = min{cZ, W} > 0.

Since 0 < 1 < 1and %2 > 1, one has 311 | 4% [1S:[11 A

14p i=1 1+ﬁﬂ1 1+81
- 71 dj +
= &(ISI?) * and Z, B SE < & (ISI2) 7, where
r d, dm X
Cq = (Czll+nf}alx )(noM) 2 , 5 = ?4—7;2‘ and dmax = max{dl, ey dM}
Since 0 < ff};] < 1and % > 1, it then follows that
1%}1 TN2\B 71”@
v, <k | (ISIZP + (ISI®) A ), (13)
26 B2(1+81)
T+h c c
V2 <ky <(|I5||2) o+ (I|5||2)ﬂ2) , (14)
284 264 26y 26
where k; = max{c”ﬂ’ 'Hﬂ’} and k3 = max{c, 2 _51”;2} x
Bp—1
2/2+T Noting that 8 < (}riﬂfz < By and B < %;f” < B,

B1(1467) B01481)
one has ([|S[12) P < ([IS[*)f1 + (ISII*)?2 and (||S||?) T2 <
(IISII2)%1 + (|IS[12)%2. 1t then follows from (13) and (14) that

2 _
V" <ky (201512
2By

V2 <ks ((ISI2PT + 2015122 . (16)

+ (ISI1%)2) (15)
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The combination of (15) and (16) yields

! vﬁf‘;l + vff"z < (ISIPY + (IS1%) (17)
3’(2 3’ ’
Then, one can obtain from (12) and (17) that
k1 12ff} k1 %
v, < ——V, " = =V, 18
TS 3ky ! (18)

Via Lemma 4 in Appendix A, one can obtain that system (9) is

fixed-time stable with the settling time Ts < 3;:‘13((] 1;11)) + 3,{"12((}3‘32#]]))

Moreover, since § = (Lr 1 2)5 and £y is nonsingular, one has

llmHTSSo,(t) =0 and So,(t) = 0 fort > Ts

Letting F = [Fy,,....Fgy]" and F = [F]...., Fj,]", one
has F = (L ® Ipny)F. Slmllarly, by usmg the same approach in
analyzing the fixed-time convergence of So,( ), one can conclude
that there exists a settling time Tr > 0 regardless of any initial
states, such that lim;_.7,Fi(t) = 0 and F(t) = 0 for t > T.

Part (ii): Boundedness of n; in t € [0, Ts).

Note that 7; = n; — Xo. From (2) and (7), one has

i = STii — & =+ Sifii + Sixo, (19)

Yvhere & = gigi + crsign“1(g;) + c3sign®?(e;), ¢ = c1; + siTsi, and
Si = Mp)(Soi)-

Let 7 = [i{,....0y]". & = [e],.... ey]", and & = [&],
,&y] " Noting that & = (£; ® I, )i, via (19), one has
E=(u®S)e— (L ®lyy) &
+ (L ® 1ng UL @ IngJe + (L5 ® 1y )50, (20)

where S = diag{S, ..., Sy} and Xp = 1y ® xo.
Consider the following Lyapunov function candidate,

Vy = Vo1 + Vo, (21)
d 1 d; 1 M
where V; = Y (l+ || e + S el )+ S, die

+C11)8 &, Vo = 1 Z, 1
constant to be specified.
The time derivative of V, along the trajectories of (20) satisfies

di(cqi — )%, and p represents a positive

M
. 1. o1 .
Vo =D @Sk — 58T (Q@1)+ 5 D dilyi — W
i=1
+ (DL @ L5 )SULy @ Ing)e + ET(DLs ® Iy )S o (22)

Since Q = DLf+-L TD > 2Iy, via Young’s inequality, one has
IE1%). (23)

_ 1 _
E @Sk~ & (Q® Iy < (||D®su 2llell*—

From the result of part (i) and (2), it can be seen that S;
and Xxo are bounded for t € [0, Ts). Then, there exist positive
constants @y and @ such that [|(£f ®Iy, )Sd(zl_1 ®I,10)||2 <w; and
(£ ® Iy, )deo||2 <> hold for t €[0, Ts). Via Young’s inequality,
one has
ET(Lr @ 1y))SU(Lr ! @ Ing)e + 5T (Lr ® 1y )S%o

1 _ _ _
§5||8I|2+CU1||8||2+02~ (24)

Since 0 < a7 < 1and o, > 1, via Lemma 3, one has

M d; 1+ i d; 1+
D fia’l leillive = G(llel*)™ and > fia’z leilli e =
1+ay d . o d
&(llell?)72", where & = i, & = Qi (ng M) 3%, and dpin =
min{dq, ..., dy}. Notmg that H"“ <1< HZ“Z, one has
CYZ 2
Var > ke ((llell® ) + (llell? ) > kellell, (25)
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where kz = min{¢,, C3}.
Moreover, via (7b) and (21
)i < 2V5q. Then, it follows from (22)-(2

), one can obtain 1 Z, 1dilei —
5) that

Vy < koVay + @3 < ke Vy + 3, (26)

2o
where k, = [P2+201 4 5

One can further conclude from (26) that V,(t) is bounded in
t € [0, Ts), which implies that ¢; and #; are bounded in [0, Ts).

Part (iii): Fixed-time convergence of 7;.

When t > Ts, one has S; = 0. Then, it can be obtained from
(19) and (20) that

i = Sii — &, (27)
and
E=Uu®S)e— (L ®Iy)&. (28)

Based on (7b), (21), and (23
the trajectories of (28) satisfies

), the time derivative of V, along

M
_ 1_ _ 1
V2 ZET(D ®S)8 — EET (Q ® lno) £+ 5 Zdl(gol - ,U,)SITE,‘
i=1
1 1<
2 2 =112
<5 UD@SIPllel? — IEI) + 5 ) diloi —

i=1

,u)s,Ta,-. (29)

Note that & = ¢;e; + c3sign®!(g;) + c3sign®2(e;). Since ¢;é;,
csign“1(g;), and c3sign®?(g;) have component-wise sign consis-
tency across all their respective elements, the terms in the ex-
pansion of ||&|%, including both square terms and cross terms,
are non-negative. Then, one has

M M M
121> > Y @?llaill® + ) Glleilzg. + Y c3lleillse:. (30)
i=1 i=1 i=1
Sinl&e 0 2< ar < 1land ap > 1, 2\na Lemma 3, one has
S et = (1e12) and X, flill32 > b (llel)™
It then follows that
M 2 2\%2
cs (lle
12 20z o 2 oy o G (el?)
el > “leill” +¢5 (lle + —. 31
IE] _;% leal’” + 5 (Iel*)™ + 2 (31)
Substituting (31) into (29) yields
- iFsTg, S ()™ S (llel)™ (32)
25 o 2 2(noM)2~1"
where I; £ (Piz dipi — IP ® 5”2 + diu.
Select u sufficiently large such that u > d"‘a" + ”D®i” In this

case, the discriminant of the quadratlc equatlon I; 1s negative,

ie, A; d,2 4(din — ||P ® S||?) < 0. Thus, we can obtain that
2
I> Dimin 2 dip — [D®S|2 — % > 0,i=1,..., M. Then, one
has
o~ Tonllel® ¢ (lel?)™ <3 (llel?)™
2= 2 2 2(noM)z—1"
< —ke (el + (lI*)™ + (Ile1*)**) < 0, (33)

Where me £ min{/7 mins - - - »

Cz
503 (nM)"‘Z 71> 0.

Since 0 < a7 < 1 and «

Ivimin} > 0 and k. = min{/ i,

> 1, via Lemma 3, one has

cad, 1+a ﬂ c3d 1+a
) VAl S Gl and Z, LB ey T2 <
1+ay
cs(|lel|?) "2, where ¢, = (Czd"‘“)(n M) 2" and & = Cl{‘i—“;;".Note
that 0 < 2"21 < 1 and 12:‘22 > 1. Then, by Lemma 3 again, one
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has
lzfo} ) 209 ) . aq(14ap)
Vor 1 <ke, <(|I8|I Y (llellF)* + (llel|7) e > (34)
20p 20y a(1+aq)
1+ay 2\ Tray 2y 1+a
Vo <kay | (lel®) ™2 + (le?)2 + (le?) 2 ), (35)
where k,, = max{(Imn)™1,¢, ',¢; '} and k., =
2a: 2a:
2 1+§2 _1+§2 % - 201
max{(fiin) '*2,C, °,C; °} x 32! Since ay < ey < 1 and
ot1(1+otz) h 2 1%11 < 2 2y*1 apd
o < < oy, one has (Jl¢) < lell® + (llell*)*! an
aq (H—rx )
(lel?) T < (lell®)* + (Jle]|*)*2. Similarly, since 1 < fsz <
ap(1+aq) 2 12% 2 2\
oy and oy < 4P < ap, one has ([le]|7) 2 < [le]l* + (llell®)
ap(1+aq)
and (Jle]|?) 2 < (|le]|®)* + (||le]|?)*2. It then follows that
20q
T+a
Vo™ < kay (ll€ll® + 300l + (lell*)2) (36)
20y
T+a;
Vo™ < kay (ll€l” 4 3011el1*)*2 + (llel*)) . (37)

Combining (36) and (37), one has

201 20y
1 T+aq 1 1+

ak,, ! Tk, - Var

< (lel® + (el + (lel®r) . (38)

Substituting (38) into (33) yields
. ke ffo} ke 12+02

Vo < ——V, .1 — Vo 2. 39
2= 4k, M 4k,, ! (39)

Note that by (7b), cy; is positive due to ¢1; > 0 and ¢4;(0) > 0.
Via (33), one can obtain that V,, ¢, and cy; are bounded. Letting
¢ 2 MaXiey C1i and k, = W it then follows from (7b),

(21), (25), and (39) that
Uy = Wy — Uy < — ey _ ke 12*032 k. (40)
21 = V2 2 = 4k, 21 4ka2 cV21.
T+a
Let £ = 1). Define a bounded

1
WC‘J , where 6; € (0,
set £21 = {e(t) || Vo1(e(t)) < £1}. The fixed-time convergence of
n; is analyzed under two conditions.
Condition 1: ¢(Ts) € §24
If &(Ts) € £24, it then follows from (40) that
ke 201 ke | 122

Vop < ——2-0,V,;"" — m Vy 2. (41)
a

By Lemma 4, it follows from (41) that system (28) is fixed-time

. N kg, (1
stable. The corresponding settling time T, < T,, £ 1 ()

thy (140) ket (1—cr1)
kap (10t
ke(ay—1) + TS

Condmon 2: &(Ts) & $24

To proceed with the proof of the fixed-time convergence of »;
under this condition, the following claim is proved first.

Claim 1: There exists a bounded time T* > Ts such that
&(T*) € 21 and g(t) € 2 forall t > T*.

This claim is proven by contradiction. Suppose the above con-
clusion is not true. Note that if &(Ts) & 21, V21(e(Ts)) > £;. Then,
based on (39), the following inequality holds:

Vy (e(Ts)) = Va (e(Ts)) — Vo(e(T™))

T* 2a 2a

ke  Tvar ke 1+§

> Vo '+ :
/TS [4ka1 2! 4ka2

ds = ¢(T" —Ts), (42)
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Oo, O«, be, O, 0o 0O«

£(f)

(a) (b) (©)

Fig. 1. Sketches of the sets §£2; and £2,. (a) Case 1. (b) Case 2. (c) Case 3.

209 20y

1+ 1+
where ¢ = 4,’:E e+ 4k" 0,72,

From (42), one can conciude that Vo(e(Ts)) — oo as T* — oo.
This contradicts the fact that V, is bounded. Thus, there exists a
bounded time T* > Ts satisfying e(T*) € £2;.

If t > T*, via (41), one can obtain that the trajectory (t) will
stay in the set £2; for all t > T*. This completes the proof of Claim
1.

With this claim established, it follows from (41
fixed-time convergent.

The rest gives the computation of the settling time T,.

To proceed, define another set 2, = {&(t) || Vai(e(t)) > €5},

Thay
where ¢, = [(ﬁ"é’;e]azq and 6, € (0, 1). If &(t) € £2,, one has

) that n; is

Uy < ke ke vlquzz (43)
2= g, 4k,, '

It follows from (43) that V;y(t) is continuously decreasing.
Then, the time interval that the trajectory &(t) reaches the bound-
ary of £2, can be upper bounded by T,, < 4’,2(11(:?‘;) t’:g;f;;ff)) .

Next, we will discuss the settling time in three cases respec-
tively. Sketches of the sets £2; and £2, are shown in Fig. 1 for
easy understanding. 52, and 952, denote the boundaries of §2;
and £2,, respectively.

Case 1: If £ > {5, Fig. 1(a) illustrates that the trajectory of &(t)
from &(Ts) to the origin involves two stages: (1) ¢(Ts) — 9£2,, and
(2) 982, — origin. Consequently, the settling time can be upper
bounded by T, < T¢, + Ty,

Case 2: If £1 < £, and &(Ts) € $2,, Fig. 1(b) shows that the
trajectory of ¢(t) from &(Ts) to the origin consists of three stages:
(1) &(Ts) — 982,, (2) 982, — 0821, and (3) 0827 — orlgm Not
that Vy1(£(t)) < €5 for e(t) & 25 and Vyy < Vyp 2 MELED" Thep,
via (42), the time interval of ¢(t) from 92, to enter §2; can be
upper bounded by T, < %. In this case, the settling time can
be upper bounded by T, < Ty, + T + Ty,.

Case 3:1f ¢ < £; and &(Ts) & $21U$2,, Fig. 1(c) shows that the
trajectory of g(t) from &(Ts) to the origin includes two stages: (1)
&(Ts) — 0£21, and (2) 0£2; — origin. Then, the settling time can
be upper bounded by T;, < T4 + T,,, where T, is given in Case 2.

In summary, based on the results obtained under two condi-
tions, system (20) is fixed-time stable with T, being the settling
time. Given that &(t) = (£f ® In,)n(t) and £y is nonsingular, it
follows that lim;_.1, (7:(t) — xo(t)) = 0 and n;(t) — xo(t) = O for
t > T,. This indicates the fixed-time convergence of n(t).

Thus, the proof is completed. O

3.2. Adaptive fixed-time solution to the regulator equations

Our control strategy relies on solving the regulator Egs. (5).
Since only a subset of the followers has access to the knowledge
of matrices S and F, the solution to this equation cannot be pre-
computed for each follower. We propose to use Si(t) and Fi(t) in
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(7) to adaptively calculate the solution of the regulator equations
in fixed time. In this case, inspired by Lemma 3 of Cai et al. (2017),
the following lemma presents a method to calculate the solution
to the regulator equations in fixed time.

Lemma 2. Under Assumption 3, for any initial state ¢;(0), the
following equation,

Gi(t) = — w6y (t)sign” (6i(£)Gi(t) — bi(t))

— k&, ()sign?(Gi(t)&(t) — bi(t)), (44)
i 5 Inv 0 Ai B,' A
with Gi(t) = SiT(t) ® d ol — ]no ® G 0i|, §i(t) =

XOTY 5 0
Vec([[]i(t)]) bi(t) = vec ([—Fi(t)])' Kk >00 < ¢ <1,

and ¢, > 1, has a unique bounded solution ¢;(t) such that gi(t) —
s Xi . ) . . Xi(t)

i £ vec in a fixed time T.. Additionally, let |’ =
i & vee([{f]) ima : et [ 510
M2 (Gi(1)), where i = 1,..., M, Xi(t) € R"<M0, Ujt) € R™*Mo,
It then holds that X;(t) — X, U;j(t) — U; within the same fixed time
T,

Proof. See Appendix B. O
3.3. Fixed-time FTC protocols

With the distributed fixed-time observer in (7) and the adap-
tive solution to the regulator equation in (44), we proceed to
develop fixed-time FTC protocols in this part.

For each follower, the following fixed-time FTC protocol is
proposed,

ui(t) = Ui(Omit) + Unhi(t) + zi(t), i € Vr, (45)

where 0,- and Uy; are the solutions of Eq. (44) and Eq. (5), respec-
tively, z;(t) will be determined later.

Note that only those followers in direct communication with
the leader have access to xo(t). For other followers, the fixed-time
FTC component z;(t) should be designed based on the estimated
state n;(t). Let éi = X — Xin; — Xpih;. Given that (A;, B;) is
controllable and rank(B;) = my, it follows from Lemma 6 given in
Appendix A that there exists a linear coordinate transformation

. A - . . . T
§i=Pie = [Cim, s ity ooy Gimpts s §im,-.pmi] » where pj,
j=1,...,m represents the controllability index of 2,]

Then, z;(t) is proposed as follows:
zi = M (0 — Gi&), (46)
where w; = [a)n, sy Wiy ey wimi]T with wijj =

- (kij,hsignpff«“(f,-j,h) + l}yvhsignqﬁvh(g:y‘h)), G; and invertible
matrix M; can be designed as in Lemma 6, the positive constants
Kij.no Kij.no Dijne and gijp j=1,...,m;, h=1,..., pj, can be given
as in Lemma 7 in Appendix A.

We are now prepared to present the main result of this sub-
section.

Theorem 2. Consider the heterogeneous MAS (1) and (2) under
Assumptions 1-4. The distributed fixed-time FTC problem under
consideration is solved by the distributed control protocol consisting
of (7), (44), (45), and (46).

Proof. The proof comprises two parts. Firstly, we show that ¢; is
bounded in [0, Ty), where T, £ max({T,, T.}. Then, we establish
that the formation tracking errors converge to zero in fixed time.
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Part (i): Boundedness of &; in t € [0, Ty,).
Under Assumptions 3-4, from (1), (7), and (45), one has
& = Aiéi + Bizi + A, (47)
where A, £ Bi(Usni + Uixo + Uii) + Ai(Xin; +}~(ixo +)~(i7~li) —j(ﬂh‘ -
XiSxo — Xi&i — Xi&i, & £ & + Smi + S0, Uy = Ui — Ui, Xi = Xi — Xi,
and S; = Mp)(So:)-

. N . . . . T
Let & = Pe; = [511_1, ey Citpys e s Cimts - ;imi,pmi] and
_ _ _ _ _ T
A = Pide = [Anaco Anp s A Bimgn |
Then, the dynamics of Eu] =1, ..., m; has the following form,

i1 = Gij2 + Ay,
Gij2 = Gij3 + A2,

EU»Pj = (kifthignmj‘“(éciJ-h) + ’zﬁ,hSig“qU'h(Eth)) + Ay
(48)

It is established in Tian et al. (2018) that system (48) is
bounded-input-bounded-state (BIBS) stable, provided that A; =
[Aj1,---, A,j,pj]T is considered as an input. Via Theorem 1 and
Lemma 2, one has A, and consequently A,j,j =1,...,m are
bounded in [0, Ty). Then, one can derive that ;:i is bounded in
[0, T;). Since ¢; = P;é; and P; is invertible, we can conclude that
e; is bounded in [0, Tp,).

Part (ii): Fixed-time convergence of &;.

When t > T, one has A, = 0. This implies that & = e; £
X;j — XiXg — Xh,'hl'.

From Lemma 7, it can be concluded that Vj € {1, ..., m;}, the
system described by (48) is fixed-time stable, and the settling
time is upper bounded by T, < Ty, 4+ T, where T, is determined
based on Lemma 7. Since ¢;(t) = P;e;(t), with P; being invertible,
and ey(t) = Ge(t) = yi(t) — hoi(t) — yo(t), it follows that
lim_, 1, e,i(t) = 0 and ey(t) = 0 for t > T, i.e., the fixed-
time FTC problem under consideration is solved. Thus, the proof
is completed. O

Remark 3. It is noted that the right-hand sides of Eqs. (7),
(44), and (45) exhibit discontinuous at zeros. Consequently, the
solutions to these equations are defined in the sense of Filippov
(2013).

Remark 4. It can be observed from Theorem 2 that the formation
tracking errors under the proposed control strategy converge to
zero in fixed time with the upper bound of the settling time
independent of the initial conditions of the system. However, it
should be pointed out that the upper bound, though explicitly
given, cannot be calculated due to its dependence on the adaptive
gain which is adopted to avoid the global graph information and
is unknown. Since the upper bound is explicitly given, even if
it cannot be determined a priori, it is still possible to adjust
certain design parameters to tune this upper bound. Moreover,
it is important to note that the parameter dn.x is only used in
estimating the upper bound of the settling time, which means
that the design and implementation of our proposed fixed-time
control protocol do not rely on any global information.

Remark 5. In practical applications, not only the process of
discretization but also other factors, such as system uncertainties
and external disturbances, often make it infeasible for the system
to achieve zero tracking error eventually. Thus, reducing tracking
errors to a negligible level is usually sufficient in practice. In this
case, our fixed-time method remains effective when applied in a
discrete manner.
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Remark 6. Compared with existing finite-time results (Cai et al.,
2020; Fu & Wang, 2016; Wang et al.,, 2024, 2020, 2021; Xiao
et al., 2009), the upper bound of the settling time in this paper
is irrelevant to the initial conditions of the system. Moreover,
by using the coordinate transformation method, the fixed-time
controller is developed without the restrictive assumption on the
full-row rank of the input matrix of the follower in Cai et al.
(2022), Jiang et al. (2023), Zhang et al. (2021). Consequently,
the potential application scope of this control protocol is sig-
nificantly expanded. However, the proposed fixed-time control
approach may require larger control inputs compared to those
finite-time methods (Cai et al,, 2020; Fu & Wang, 2016; Wang
et al., 2024, 2020, 2021; Xiao et al., 2009), posing challenges for
energy-limited tasks.

4. Simulation

Consider four practical cart-pendulums borrowed from Doyle
et al. (2013) as followers of the following form,

0 1 0 0 0 0
) 0 0 -m& ¢ L 0
=119 o o 1 x| & o |u
(Mj+mj)g 1 1
00 Typ— O g T
10 00
yi: 0 0 1 0 Xi,

where x; = (pi pi Vi Vi)' wi = (i d)" yi = (i ¥)T, piis
the linear position of the cart i, ¥; is the angle of pendulum i
with respect to the vertical line, f; is the horizontal force input
to cart i, d; is the perpendicular force input to pendulum i at
the end, M; and m; are the masses of cart i and pendulum i,
respectively, I; is the length of pendulum i, and g represents the
gravity constant with value of 9.8. The parameters {M;, m;, l;}, i =
1, 2, 3, 4, are chosen as {1, 0.05, 60}, {1.1,0.08, 61}, {1, 0.2, 61},
and {1.1, 0.3, 60}, respectively.
The system matrices of the leader are set as follows,

0 1 0
s=(-1 0 o ,F:(é ’ 8).
0 0 O
The time-varying formation vector is chosen as h;(t) =

. (i~ (VAN ;

’ - ’ sy o1
(5sin(t 4+ 52%) 5cos(t+ 527)) i = 1,2,3,4, and hy(t)
= (5sin(t + 5) 0) . Solving the Egs. (5) and (6) respec-

tively yields
1 0 0
X o 1 of ,_(M gm; 0
t 0 1 (O P —m; mili + W 0 ’
-1 0 0 i

xo_(1 000\ _(-M 0
=\o 1 0 o) """T\-m 0)

The communication graph is given in Fig. 2. The parameters
in the distributed fixed-time observer (7), adaptive regulator
Eq. (44), and FTC protocol (46) are set as follows: ¢; = ¢4 =
C6=K=5,C3=C5=C7=6,0l1=,31=)/1=(p1=7/9,
oy = fr=v2=¢=907/700,and M; = I,i = 1,2, 3, 4. Let the
initial conditions x;(0), xo(0), Si(0), Fo;(0), and ¢;(0) are randomly
generated within the range of —5 to 5. The other initial states are
selected as 7n;(0) = 03, ¢4;(0) = 1.

The simulation results with one particular initial condition are
presented in Figs. 3 and 4. The state observer errors between
the distributed adaptive fixed-time observers and the leader are
shown in Fig. 3(a). The adaptive gains of the observer are pre-
sented in Fig. 3(b), illustrating the convergence of all adaptive
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Fig. 2. Communication graph.
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Fig. 3. (a) The observer errors. (b) The adaptive observer gains.
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Fig. 4. (a) The formation tracking errors with the adaptive fixed-time controller.
(b) The formation tracking errors with the adaptive finite-time controller.

parameters to certain positive constants. The output formation
tracking errors are shown in Fig. 4(a). It is noted that the forma-
tion tracking errors converge to the error tolerance threshold of
102 within 8.8s.

For comparison, Fig. 4(b) shows the formation tracking errors
using a finite-time controller derived by modifying our proposed
control protocol to exclude the power index larger than one.
Notably, the initial conditions remain the same. The compari-
son between Figs. 4(a) and 4(b) highlights that the fixed-time
controller ensures a faster error convergence than its finite-time
counterpart.

5. Conclusion

This paper addresses the problem of distributed adaptive
fixed-time FTC for heterogeneous MASs. By developing a dis-
tributed adaptive fixed-time observer and adaptive fixed-time
solution of the regulator equations, a fully distributed fixed-
time FTC protocol has been proposed for each follower without
requiring the restrictive full-row rank assumption. The proposed
fixed-time control strategy successfully solves the FTC problem
in a fully distributed manner, eliminating the need for global
information. Simulations with comparisons have been conducted
to validate the effectiveness of the proposed control protocol.
Future research work can be focused on improving the proposed
distributed adaptive fixed-time FTC method to eliminate the need
for global information to estimate the upper bound of the settling
time. Moreover, it is interesting to investigate the fixed-time
sampled-data FTC problem for heterogeneous MASs.

Appendix A

Several key lemmas, which are utilized in the proof of the
main results of this work, are introduced in this appendix.
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Lemma 3 (Hardy et al, 1952). For any g, eRi=1,2 ,n, if
p € (0, 1] and q > 1, the inequalities ( 1 |§,) < ;' ) |§,|P <

n' =P (XL &) and YL 1817 < (L, &) < n ' 0L &I

hold.

Lemma 4 (Polyakov, 2011). Given the system x = f(x, t), where
f : R" x [0,00) — R" is a continuous vector function satisfying
f(0,t) = 0. Suppose there exists a continuous, positive definite
function g(x) : R" — R such that g(x) < —kc(g(x))° — ka(g(x))?
forall x € R", where k, > 0, k4 > 0,0 <c < 1,and d > 1. The
system is fixed-time stable, with an upper bound on the settling time
1 1
T'= oot Guo
Lemma 5 (Qian & Lin, 2001). For x € Randy € R, if a; > 0 and

ay |4 ap[x|?1H92 | gy[x|91T92
a >0, [x[Mly[* < = i

Lemma 6 (Luenberger, 1967). Consider a linear system
X(t) = Ax(t) + Bu(t), (49)

where x € R", u € R™, A and B are the system matrices.
If (A, B) is controllable and the rankB = m, there exists a
linear coordinate transformation {(t) = Qx(t) € R" such that

() = [C]T(t),...,;“nf(t)]T. Let pi, i = 1,...,m, denote the
controllability index of ¢(t). Then, {(t) can be eTxpressed as ¢(t) =
[é“l,‘l(t)v DRI é“l,p](t)v ey ;m,](t), ey ;m,pm(t)] and the dynamlCS
of ¢&i(t), i=1,...,m, are given by:

Gia(t) = gia(t),

Gia(t) = Gis(t),

C'f,p,-(t) = q] A%ix(t) + q A~ Bu(t),
where g

1 and all the other elements set to 0, and g; = Zk
o =0.

= 1 Q i, € R" is a vector with the kth element set to
1+ o) with

Furthermore, defining £°(t) = [£1,5,(¢), ..., ;“mlypm(r)]T e R™,
the dynamics can be described by,
£ (t) = Gx(t) + Mu(t), (50)
qTAm q]TAm —-1p
where G = : ,and M = : with M being
q;APm q;Apm—IB
invertible.

Lemma 7 (Basin et al., 2016). Consider the system,
x1(t) = x,(t)
Xa(t) = x5(t
.2( ) = x3(t) 51)
Xn(t) = u(t)

where x(t) = [x:(t), ..., xa(t)]"
control input, respectively.
The fixed-time stabilization control input is given by:
n
u=— Z (cisign®i(x;) + C;sign®i(x;)) , (52)

i=1

and u(t) represent the state and

where ¢; and ¢;, i = 1,...,n, are the positive constants of the
polynomials s" +cps" "1+ - -4+cy5+cq and s"+CpS" 1+ - -+ Ca5+C1
which are required to be Hurwitz. The constants «; and k;, i =
1,2, ..., n, are chosen such that:

Kijj+1

, Kol = == —,
2Kj+1 — Kj

Automatica 183 (2026) 112632

withj = 2,...,1 kny1 = kny1 = L, kn = k € (1 —¢€,1), and
ikn =k € (1, 1+ €), where €, € > 0 are sufficiently small.

Then, the settling time is bounded by:

p}\max(Pl) % q)\max(PZ) el

< R (P + e (P),(53)
(1= pmin(Q) ™ (g = DAmin(Q) "™
where P;, i = 1, 2, are real symmetric positive definite matrices that
satisfy the Lyapunov equation P;A; +AiTPi = —Q;, with Q; being an
arbitrary positive definite matrix. The matrices A;, i = 1, 2, have the
following forms:

o0 1 - 0 o0 1 - 0

A= S A= : o
0 0 1 0 0 1
—K1  —Kz - —Knp —k1 —ky - —Kn

Appendix B. Proof of Lemma 2

The proof of Lemma 2 is structured in two parts. Firstly, we
demonstrate that ¢;(t) remains bounded before the convergence
of Spi(t) and Fy;(t), i.e., ¢(t) remains bounded over the interval
[0, Tsr), where Tse = max{Ts, Tr}. Then, we establish that ¢;(t) —
¢; in fixed time.

Part (i): Show that ¢;(t) is bounded in [0, Tsf).

Define the Lyapunov function candidate as V3 = & ¢;. The
time derivative of V3 along the trajectory of (44) is obtained as

Vs= =2k 19ill1 50 — 2 11113122 — 26/ sign?1 (§:) — 2« b, sign*2(9;)

(ni+p)ng
NETRE = ~ 149
< =2 |Bil T - 219112 2 D
j=1

A 91

Iby 1191

(ni+p)ng v
~ A~ 2
+ 2 Y by(OIs(0)l”, (54)

j=1

N NN N A T
where §; = 65 — b = [Jin.....Vim+pmo] and

R . R T
bi = I:bilv RV bi(n;+p)n0] .

Via Lemma 5 in Appendix A, one has Z§"f+p)"° Ibylly” <
i 1Byl 1 i PN
Z(n +p)ng zﬁ 1+1 ”y'”lizl and Z(n +p)ng |bu”yu| 2 <
Z("’ﬂ’)no ‘b:/’)lzﬁ + .2 ||y1||}1$§ It then follows from (54) that
y Al | A
Vs < —kilBillige! — kallFill 1122 + @i (55)
where k; = 2«(1 — (pf’jr]) > 0,k = 2«(1 — (ﬂ;”ij) > 0, and
~ 1+ ~ dtgy
. by by .
o = Yy (|(21+1+ |Z|2+1 ) Since 0 < %% < 1 and
. Al ~ m
H% > 1, via Lemma 3 one has ||yi||1i$; > (I7:1>) "2 and
150152 = (i + pYno) 2 (15:12) 2 - Noting that Ha<is
192 one can derive that 32 < (5:[12) 2" +(I5:[12) 7" . Then,
one has
Vs <~k (U3 F + 03122 + 6, (56)

where k, = min{ki, ky((n; + o) 2} > 0.

Via Theorem 1, one has ¢; and Bi are bounded in [0, Tsf). We
can find positive constants g, k,, and kj satisfying 9; < ¢ and
1712 = 116iQigi — bill® < ko ||il|> + kp within this interval. Then,
it follows that
V3 < kyk, Vs + kyky + 0, (57)

which implies that V3, and consequently ¢;(t) and ci(t), are
bounded in [0, Tsg).
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Part (ii): Show that ¢;(t) — ¢; in fixed time.

When t > T, one has 6(t) = o 2 S| ® 0 g]
1® A B and B-(t) = b, & vec 0 Following the
G 0 e -k &

result in Cai et al. (2017), there exists an orthogonal matrix
Q; € Romi+mix(no(i+m)) gych that 0;Q; = [6; 0], where &; €
Rro(m+mxTi with rank(6;) = r;. Moreover, one can also find a
unique constant vector gﬂ € R" such that g;¢j; = b;.

Let &i=Q,"¢i=[g; 551" where G €R" and & € RMoMiHm)—T,
When t > Tg, the system (44) can be decomposed into:

—k6&;  sign?!(6;5i — by) — k&, sign2(6iGin — by),

Gin
o =0. (58)
It can be concluded from (58) that there is a constant vector
cip € R0i+mi)=r gych that Zip(t) — ¢pp in the fixed time Tef.

Let ¢i1(t)=ci1(t)—¢i1. Noting that 6;¢;1 =b;, via (58), one has
Gin = —K5; sign?(6iGi) — 5y sign*2(&iGn)- (59)

Consider the Lyapunov function candidate V, = ;I Zi1. Letting
¥i = ;¢i, the time derivative of V4 along the trajectory of (59) is
given by

~ 1
Va = —2cc|Filly 15! — 2617l 1502. (60)

Note that 0 < 1, < 1and ¢, > 1. Via Lemma 3, one has

1 e 1
I3l 15g, > CIill® )2 and 7012 = (n+png) > (||yl|| )
Since o;' o; is positive definite, it follows that Iyill? = g“ Ui o,-gn
> AminVa, Where Amin=Amin(3,6;). Then, one has
m Rhx7}
V4 < k3 — k4V4 2 s (61)

where ks = 2(Amin) 2+ and ks = 2c(Amin) 7 (1 +p)g) 7
Via Lemma 4, it can be obtained from (61) that ¢j1(t) — ¢ni
in a fixed time and the settling time can be estimated by T, <
m+h1w+ufw

Since ¢;(t Q gi(t) = [S'n Sp]' and Q is invertible, it then
follows that g,( ) = ¢ in a fixed time T,, where g; is a solution
to oig; = b;. According to Theorem 1.9 in Huang (2004), regulator
Eqs. (5) can be reformulated as o¢; = b;. Thus, the adaptive
regulator equations in (44) has a unique bounded solution &i(t)
such that &(t) — ¢, Xi(t) — X;, and Ui(t) — U; in a fixed time
T.. The proof is thus completed. O

]T
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